Krauel, Matthew ORCID: 0000-0002-3693-9592 and Miyamoto, Masahiko (2015). A modular invariance property of multivariable trace functions for regular vertex operator algebras. J. Algebra, 444. S. 124 - 143. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1090-266X

Full text not available from this repository.

Abstract

We prove an SL2(Z)-invariance property of multivariable trace functions on modules for a regular VOA. Applying this result, we provide a proof of the inversion transformation formula for Siegel theta series. As another application, we show that if V is a simple regular VOA containing a simple regular subVOA U whose commutant U-c is simple, regular, and satisfies (U-c)(c) = U, then all simple U-modules appear in some simple V-module. (C) 2015 Elsevier Inc. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Krauel, MatthewUNSPECIFIEDorcid.org/0000-0002-3693-9592UNSPECIFIED
Miyamoto, MasahikoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-383727
DOI: 10.1016/j.jalgebra.2015.07.013
Journal or Publication Title: J. Algebra
Volume: 444
Page Range: S. 124 - 143
Date: 2015
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Place of Publication: SAN DIEGO
ISSN: 1090-266X
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/38372

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item