Le, Van Bang, Oversberg, Andrea and Schaudt, Oliver (2015). Polynomial time recognition of squares of Ptolemaic graphs and 3-sun-free split graphs. Theor. Comput. Sci., 602. S. 39 - 50. AMSTERDAM: ELSEVIER. ISSN 1879-2294
Full text not available from this repository.Abstract
The square of a graph G, denoted G(2), is obtained from G by putting an edge between two distinct vertices whenever their distance is two. Then G is called a square root of G(2). Deciding whether a given graph has a square root is known to be NP-complete, even if the root is required to be a chordal graph or even a split graph. We present a polynomial time algorithm that decides whether a given graph has a Ptolemaic square root. If such a root exists, our algorithm computes one with a minimum number of edges. In the second part of our paper, we give a characterization of the graphs that admit a 3-sun-free split square root. This characterization yields a polynomial time algorithm to decide whether a given graph has such a root, and if so, to compute one. (C) 2015 Elsevier B.V. All rights reserved.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-389594 | ||||||||||||||||
DOI: | 10.1016/j.tcs.2015.07.060 | ||||||||||||||||
Journal or Publication Title: | Theor. Comput. Sci. | ||||||||||||||||
Volume: | 602 | ||||||||||||||||
Page Range: | S. 39 - 50 | ||||||||||||||||
Date: | 2015 | ||||||||||||||||
Publisher: | ELSEVIER | ||||||||||||||||
Place of Publication: | AMSTERDAM | ||||||||||||||||
ISSN: | 1879-2294 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/38959 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |