Li, Rui, Perneczky, Robert ORCID: 0000-0003-1981-7435, Drzezga, Alexander and Kramer, Stefan (2015). Efficient redundancy reduced subgroup discovery via quadratic programming. J. Intell. Inf. Syst., 44 (2). S. 271 - 289. DORDRECHT: SPRINGER. ISSN 1573-7675
Full text not available from this repository.Abstract
Subgroup discovery is a task at the intersection of predictive and descriptive induction, aiming at identifying subgroups that have the most unusual statistical (distributional) characteristics with respect to a property of interest. Although a great deal of work has been devoted to the topic, one remaining problem concerns the redundancy of subgroup descriptions, which often effectively convey very similar information. In this paper, we propose a quadratic programming based approach to reduce the amount of redundancy in the subgroup rules. Experimental results on 12 datasets show that the resulting subgroups are in fact less redundant compared to standard methods. In addition, our experiments show that the computational costs are significantly lower than the costs of other methods compared in the paper.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-409112 | ||||||||||||||||||||
DOI: | 10.1007/s10844-013-0284-1 | ||||||||||||||||||||
Journal or Publication Title: | J. Intell. Inf. Syst. | ||||||||||||||||||||
Volume: | 44 | ||||||||||||||||||||
Number: | 2 | ||||||||||||||||||||
Page Range: | S. 271 - 289 | ||||||||||||||||||||
Date: | 2015 | ||||||||||||||||||||
Publisher: | SPRINGER | ||||||||||||||||||||
Place of Publication: | DORDRECHT | ||||||||||||||||||||
ISSN: | 1573-7675 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/40911 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |