Popkov, Vladislav ORCID: 0000-0002-8893-3678 and Prosen, Tomaz ORCID: 0000-0001-9979-6253 (2015). Infinitely Dimensional Lax Structure for the One-Dimensional Hubbard Model. Phys. Rev. Lett., 114 (12). COLLEGE PK: AMER PHYSICAL SOC. ISSN 1079-7114

Full text not available from this repository.

Abstract

We report a two-parametric irreducible infinitely dimensional representation of the Lax integrability condition for the Fermi Hubbard chain. In addition to being of fundamental interest, hinting at possible novel quantum symmetry of the model, our construction allows for an explicit representation of an exact steady state many-body density operator for a nonequilibrium boundary-driven Hubbard chain with arbitrary (asymmetric) particle source (sink) rates at the left (right) end of the chain and with arbitrary boundary values of chemical potentials.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Popkov, VladislavUNSPECIFIEDorcid.org/0000-0002-8893-3678UNSPECIFIED
Prosen, TomazUNSPECIFIEDorcid.org/0000-0001-9979-6253UNSPECIFIED
URN: urn:nbn:de:hbz:38-409556
DOI: 10.1103/PhysRevLett.114.127201
Journal or Publication Title: Phys. Rev. Lett.
Volume: 114
Number: 12
Date: 2015
Publisher: AMER PHYSICAL SOC
Place of Publication: COLLEGE PK
ISSN: 1079-7114
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
CONSERVATION-LAWS; INTEGRABILITY; CHAINSMultiple languages
Physics, MultidisciplinaryMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/40955

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item