Maegele, Marc, Stuermer, Ewa K., Hoeffgen, Alexander, Uhlenkueken, Ulla, Mautes, Angelika, Schaefer, Nadine, Lippert-Gruener, Marcela, Schaefer, Ute and Hoehn, Mathias (2015). Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites. Acta Radiol. Open, 4 (1). LONDON: SAGE PUBLICATIONS LTD. ISSN 2058-4601

Full text not available from this repository.

Abstract

Background: Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability world-wide. The predominant cause of death after TBI is brain edema which can be quantified by non-invasive diffusion-weighted magnetic resonance imaging (DWI). Purpose: To provide a better understanding of the early onset, time course, spatial development, and type of brain edema after TBI and to correlate MRI data and the cerebral energy state reflected by the metabolite adenosine triphosphate (ATP). Material and Methods: The spontaneous development of lateral fluid percussion-induced TBI was investigated in the acute (6 h), subacute (48 h), and chronic (7 days) phase in rats by MRI of quantitative T2 and apparent diffusion coefficient (ADC) mapping as well as perfusion was combined with ATP-specific bioluminescence imaging and histology. Results: An induced TBI led to moderate to mild brain damages, reflected by transient, pronounced development of vasogenic edema and perfusion reduction. Heterogeneous ADC patterns indicated a parallel, but mixed expression of vasogenic and cytotoxic edema. Cortical ATP levels were reduced in the acute and subacute phase by 13% and 27%, respectively, but were completely normalized at 7 days after injury. Conclusion: The partial ATP reduction was interpreted to be partially caused by a loss of neurons in parallel with transient dilution of the regional ATP concentration by pronounced vasogenic edema. The normalization of energy metabolism after 7 days was likely due to infiltrating glia and not to recovery. The MRI combined with metabolite measurement further improves the understanding and evaluation of brain damages after TBI.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Maegele, MarcUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Stuermer, Ewa K.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hoeffgen, AlexanderUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Uhlenkueken, UllaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mautes, AngelikaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schaefer, NadineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lippert-Gruener, MarcelaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schaefer, UteUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hoehn, MathiasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-415472
DOI: 10.1177/2047981614555142
Journal or Publication Title: Acta Radiol. Open
Volume: 4
Number: 1
Date: 2015
Publisher: SAGE PUBLICATIONS LTD
Place of Publication: LONDON
ISSN: 2058-4601
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
LASER-DOPPLER FLOWMETRY; EARLY-ONSET STIMULATION; CORTICAL IMPACT INJURY; ENRICHED ENVIRONMENT; RATS; DIFFUSION; EDEMA; SPECTROSCOPY; DYSFUNCTION; NEUROMOTORMultiple languages
Radiology, Nuclear Medicine & Medical ImagingMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/41547

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item