Suleiman, Ahmed Abbas, Frechen, Sebastian, Scheffler, Matthias ORCID: 0000-0002-9031-1368, Zander, Thomas, Kahraman, Deniz, Kobe, Carsten, Wolf, JRgen, Nogova, Lucia and Fuhr, Uwe (2015). Modeling Tumor Dynamics and Overall Survival in Advanced Non-Small-Cell Lung Cancer Treated with Erlotinib. J. Thorac. Oncol., 10 (1). S. 84 - 93. PHILADELPHIA: LIPPINCOTT WILLIAMS & WILKINS. ISSN 1556-1380

Full text not available from this repository.

Abstract

Introduction: Pharmacostatistical models can quantify different relationships and improve decision making in personalized medicine and drug development. Our objectives were to develop models describing non-small-cell lung cancer (NSCLC) dynamics during first-line treatment with erlotinib, and survival of the cohort. Methods: Data from patients with advanced NSCLC (n = 39) treated first-line with erlotinib (150 mg/day) were analyzed using nonlinear mixed effects modeling. Exposure-driven disease-drug models were built to describe tumor metabolic and proliferative dynamics evaluated by positron emission tomography (PET) using 2'-deoxy-2'-[F-18] fluoro-D-glucose (FDG) and 3'-[F-18] fluoro-3'-deoxy-L-thymidine (FLT), respectively, at baseline, weeks 1 and 6 after starting erlotinib treatment. A parametric time-to-event model was built to describe overall survival (OS). Demographics, histology, mutational, smoking, and baseline performance statuses were tested for their effects on models developed, in addition to tumor dynamics on survival. Results: An exponential relationship described progression, and a concentration-driven drug effect model described erlotinib effect. An activating epidermal growth factor receptor (EGFR) mutation increased the drug effect as assessed using FDG-PET by 2.19-fold (95% confidence interval [CI]: 1.35-4.44). An exponential distribution described the times-to-death distribution. Baseline FDG uptake (p=0.0005; hazard ratio [HR] = 1.26 for every unit increase, 95% CI: 1.13-1.42) and relative change in FDG uptake after 1 week of treatment (p=0.0073; HR=0.84 for every 10% drop, 95% CI: 0.71-0.91) were significant OS predictors irrespective of the EGFR mutational status. FLT-PET was statistically less significant than FDG-PET for OS prediction. Conclusion: Models describing tumor dynamics and survival of advanced NSCLC patients first-treated with erlotinib were developed. The impacts of different covariates were quantified.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Suleiman, Ahmed AbbasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Frechen, SebastianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Scheffler, MatthiasUNSPECIFIEDorcid.org/0000-0002-9031-1368UNSPECIFIED
Zander, ThomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kahraman, DenizUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kobe, CarstenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wolf, JRgenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Nogova, LuciaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Fuhr, UweUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-418006
DOI: 10.1097/JTO.0000000000000330
Journal or Publication Title: J. Thorac. Oncol.
Volume: 10
Number: 1
Page Range: S. 84 - 93
Date: 2015
Publisher: LIPPINCOTT WILLIAMS & WILKINS
Place of Publication: PHILADELPHIA
ISSN: 1556-1380
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
POSITRON-EMISSION-TOMOGRAPHY; PHASE-II; SOLID TUMORS; DRUG DEVELOPMENT; GEFITINIB; GROWTH; RECIST; SIZE; PET; OPPORTUNITIESMultiple languages
Oncology; Respiratory SystemMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/41800

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item