Kruegel, Florian (2015). Potential theory for the sum of the 1-Laplacian and p-Laplacian. Nonlinear Anal.-Theory Methods Appl., 112. S. 165 - 181. OXFORD: PERGAMON-ELSEVIER SCIENCE LTD. ISSN 1873-5215
Full text not available from this repository.Abstract
The variational problem of minimizing the functional u bar right arrow integral(Omega) vertical bar Du vertical bar + 1/p integral(Omega) vertical bar Du vertical bar(p) - integral(Omega) au on a domain Omega subset of R-n under zero boundary values, which appears for example in the theory of Bingham fluids, shows interesting phenomena such as the formation of a subset of Omega with positive measure where the minimizer is constant (a plateau''). The corresponding Euler-Lagrange equation should be -Lambda(1)u -Lambda(p)u = a, but the 1-Laplacian is not defined in points where Du = 0. We show that it is nevertheless possible to define subsolutions and supersolutions for this equation. We show that the comparison principle is valid, and we begin developing a potential theory analogous to what is known about the p-Laplacian. In addition we apply those notions to rotationally invariant solutions, and we discuss properties of the plateau and a possible connection to the theory. (C) 2014 Elsevier Ltd. All rights reserved.
Item Type: | Journal Article | ||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-419879 | ||||||||
DOI: | 10.1016/j.na.2014.08.019 | ||||||||
Journal or Publication Title: | Nonlinear Anal.-Theory Methods Appl. | ||||||||
Volume: | 112 | ||||||||
Page Range: | S. 165 - 181 | ||||||||
Date: | 2015 | ||||||||
Publisher: | PERGAMON-ELSEVIER SCIENCE LTD | ||||||||
Place of Publication: | OXFORD | ||||||||
ISSN: | 1873-5215 | ||||||||
Language: | English | ||||||||
Faculty: | Unspecified | ||||||||
Divisions: | Unspecified | ||||||||
Subjects: | no entry | ||||||||
Uncontrolled Keywords: |
|
||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/41987 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |