Lytchak, Alexander (2014). Polar Foliations of Symmetric Spaces. Geom. Funct. Anal., 24 (4). S. 1298 - 1316. BASEL: SPRINGER BASEL AG. ISSN 1420-8970

Full text not available from this repository.

Abstract

We prove that a polar foliation of codimension at least three in an irreducible compact symmetric space is hyperpolar, unless the symmetric space has rank one. For reducible symmetric spaces of compact type, we derive decomposition results for polar foliations.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Lytchak, AlexanderUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-432521
DOI: 10.1007/s00039-014-0279-2
Journal or Publication Title: Geom. Funct. Anal.
Volume: 24
Number: 4
Page Range: S. 1298 - 1316
Date: 2014
Publisher: SPRINGER BASEL AG
Place of Publication: BASEL
ISSN: 1420-8970
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
SINGULAR RIEMANNIAN FOLIATIONS; ISOPARAMETRIC HYPERSURFACES; CLASSIFICATION; SUBMANIFOLDS; HOMOGENEITY; THEOREMMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/43252

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item