Klevtsov, Semyon and Zelditch, Steve (2014). Stability and integration over Bergman metrics. J. High Energy Phys. (7). NEW YORK: SPRINGER. ISSN 1029-8479
Full text not available from this repository.Abstract
We study partition functions of random Bergman metrics, with the actions defined by a class of geometric functionals known as 'stability functions'. We introduce a new stability invariant - the critical value of the coupling constant - defined as the minimal coupling constant for which the partition function converges. It measures the minimal degree of stability of geodesic rays in the space the Bergman metrics, with respect to the action. We calculate this critical value when the action is the v-balancing energy, and show that gamma(crit)(k) = k-h on a Riemann surface of genus h.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-433763 | ||||||||||||
DOI: | 10.1007/JHEP07(2014)100 | ||||||||||||
Journal or Publication Title: | J. High Energy Phys. | ||||||||||||
Number: | 7 | ||||||||||||
Date: | 2014 | ||||||||||||
Publisher: | SPRINGER | ||||||||||||
Place of Publication: | NEW YORK | ||||||||||||
ISSN: | 1029-8479 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/43376 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |