Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone, R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M. O., Friedrich, T. and Ohlwein, C. (2014). Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature, 510 (7503). S. 134 - 147. LONDON: NATURE PUBLISHING GROUP. ISSN 1476-4687

Full text not available from this repository.

Abstract

Our understanding of the deglacial evolution of the Antarctic Ice Sheet (AIS) following the Last Glacial Maximum(26,000-19,000 years ago)(1) is based largely on a few well-dated but temporally and geographically restricted terrestrial and shallow-marine sequences(2-4). This sparseness limits our understanding of the dominant feedbacks between the AIS, Southern Hemisphere climate and global sea level. Marine records of iceberg-rafted debris (IBRD) provide a nearly continuous signal of ice-sheet dynamics and variability. IBRD records from the North Atlantic Ocean have been widely used to reconstruct variability in Northern Hemisphere ice sheets(5), but comparable records from the Southern Ocean of the AIS are lacking because of the low resolution and large dating uncertainties in existing sediment cores. Here we present two well-dated, high-resolution IBRD records that capture a spatially integrated signal of AIS variability during the last deglaciation. We document eight events of increased iceberg flux from various parts of the AIS between 20,000 and 9,000 years ago, in marked contrast to previous scenarios which identified the main AIS retreat as occurring after meltwater pulse 1A(3,6-8) and continuing into the late Holocene epoch. The highest IBRD flux occurred 14,600 years ago, providing the first direct evidence for an Antarctic contribution to meltwater pulse 1A. Climate model simulations with AIS freshwater forcing identify a positive feedback between poleward transport of Circumpolar Deep Water, subsurface warming and AIS melt, suggesting that small perturbations to the ice sheet can be substantially enhanced, providing a possible mechanism for rapid sea-level rise.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Weber, M. E.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Clark, P. U.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kuhn, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Timmermann, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sprenk, D.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gladstone, R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zhang, X.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lohmann, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Menviel, L.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Chikamoto, M. O.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Friedrich, T.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ohlwein, C.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-435968
DOI: 10.1038/nature13397
Journal or Publication Title: Nature
Volume: 510
Number: 7503
Page Range: S. 134 - 147
Date: 2014
Publisher: NATURE PUBLISHING GROUP
Place of Publication: LONDON
ISSN: 1476-4687
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PINE ISLAND GLACIER; SOUTHERN-OCEAN; WEDDELL SEA; SCOTIA SEA; RADIOCARBON CONSTRAINTS; CIRCUMPOLAR CURRENT; RETREAT; CORE; CHRONOLOGY; MAXIMUMMultiple languages
Multidisciplinary SciencesMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/43596

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item