Lange, Tatjana, Mosler, Karl and Mozharovskyi, Pavlo (2014). Fast nonparametric classification based on data depth. Stat. Pap., 55 (1). S. 49 - 70. NEW YORK: SPRINGER. ISSN 1613-9798
Full text not available from this repository.Abstract
A new procedure, called D D alpha-procedure, is developed to solve the problem of classifying d-dimensional objects into q a parts per thousand yen 2 classes. The procedure is nonparametric; it uses q-dimensional depth plots and a very efficient algorithm for discrimination analysis in the depth space [0,1] (q) . Specifically, the depth is the zonoid depth, and the algorithm is the alpha-procedure. In case of more than two classes several binary classifications are performed and a majority rule is applied. Special treatments are discussed for 'outsiders', that is, data having zero depth vector. The D D alpha-classifier is applied to simulated as well as real data, and the results are compared with those of similar procedures that have been recently proposed. In most cases the new procedure has comparable error rates, but is much faster than other classification approaches, including the support vector machine.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-447227 | ||||||||||||||||
DOI: | 10.1007/s00362-012-0488-4 | ||||||||||||||||
Journal or Publication Title: | Stat. Pap. | ||||||||||||||||
Volume: | 55 | ||||||||||||||||
Number: | 1 | ||||||||||||||||
Page Range: | S. 49 - 70 | ||||||||||||||||
Date: | 2014 | ||||||||||||||||
Publisher: | SPRINGER | ||||||||||||||||
Place of Publication: | NEW YORK | ||||||||||||||||
ISSN: | 1613-9798 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/44722 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |