Hsiao, Chin-Yu and Marinescu, George ORCID: 0000-0001-6539-7860 (2014). Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles. Commun. Anal. Geom., 22 (1). S. 1 - 109. SOMERVILLE: INT PRESS BOSTON, INC. ISSN 1944-9992
Full text not available from this repository.Abstract
In this paper we study the asymptotic behaviour of the spectral function corresponding to the lower part of the spectrum of the Kodaira Laplacian on high tensor powers of a holomorphic line bundle. This implies a full asymptotic expansion of this function on the set where the curvature of the line bundle is non-degenerate. As application we obtain the Bergman kernel asymptotics for adjoint semi-positive line bundles over complete Kahler manifolds, on the set where the curvature is positive. We also prove the asymptotics for big line bundles endowed with singular Hermitian metrics with strictly positive curvature current. In this case, the full asymptotics holds outside the singular locus of the metric.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-450453 | ||||||||||||
Journal or Publication Title: | Commun. Anal. Geom. | ||||||||||||
Volume: | 22 | ||||||||||||
Number: | 1 | ||||||||||||
Page Range: | S. 1 - 109 | ||||||||||||
Date: | 2014 | ||||||||||||
Publisher: | INT PRESS BOSTON, INC | ||||||||||||
Place of Publication: | SOMERVILLE | ||||||||||||
ISSN: | 1944-9992 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/45045 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |