Gnyp, Martin L. ORCID: 0000-0002-5702-4914, Miao, Yuxin ORCID: 0000-0001-8419-6511, Yuan, Fei ORCID: 0000-0001-6979-0029, Ustin, Susan L., Yu, Kang ORCID: 0000-0002-0686-6783, Yao, Yinkun, Huang, Shanyu and Bareth, Georg (2014). Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crop. Res., 155. S. 42 - 56. AMSTERDAM: ELSEVIER SCIENCE BV. ISSN 1872-6852

Full text not available from this repository.

Abstract

Normalized Difference Vegetation Index and Ratio Vegetation Index obtained with the fixed band GreenSeeker active multispectral canopy sensor (GS-NDVI and GS-RVI) have been commonly used to non-destructively estimate crop growth parameters and support precision crop management, but their performance has been influenced by soil and/or water backgrounds at early crop growth stages and saturation effects at moderate to high biomass conditions. Our objective is to improve estimation of rice (Oryza sativa L) aboveground biomass (AGB) with hyperspectral canopy sensing by identifying more optimal measurements using one or more strategies: (a) soil adjusted Vegetation Indices (VIs); (b) optimized narrow band RVI and NDVI; and (c) Optimum Multiple Narrow Band Reflectance (OMNBR) models based on raw reflectance, and its first and second derivatives (FDR and SDR). Six rice nitrogen (N) rate experiments were conducted in Jiansanjiang, Heilongjiang province of Northeast China from 2007 to 2009 to create different biomass conditions. Hyperspectral field data and AGB samples were collected at four growth stages from tillering through heading from both experimental and farmers' fields. The results indicate that six-band OMNBR models (R-2 = 0.44-0.73) explained 21-35% more AGB variability relative to the best performing fixed band RVI or NDVI at different growth stages. The FDR-based 6-band OMNBR models explained 4%, 6% and 8% more variability of AGB than raw reflectance-based 6-band OMNBR models at the stem elongation (R-2 = 0.77), booting (R-2 =0.50), and heading stages (R-2 = 0.57), respectively. The SDR-based 6-band OMNBR models made no further improvements, except for the stem elongation stage. Optimized RVI and NDVI for each growth stage (R-2 = 0.34-0.69) explained 18-26% more variability in AGB than the best performing fixed band RVI or NOVI. The FDR- and SDR-based optimized VIs made no further improvements. These results were consistent across different sites and years. It is concluded that with suitable band combinations, optimized narrow band RVI or NDVI could significantly improve estimation of rice AGB at different growth stages, without the need of derivative analysis. Six-band OMNBR models can further improve the estimation of AGB over optimized 2-band VIs, with the best performance using SDR at the stem elongation stage and FDR at other growth stages. (C) 2013 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Gnyp, Martin L.UNSPECIFIEDorcid.org/0000-0002-5702-4914UNSPECIFIED
Miao, YuxinUNSPECIFIEDorcid.org/0000-0001-8419-6511UNSPECIFIED
Yuan, FeiUNSPECIFIEDorcid.org/0000-0001-6979-0029UNSPECIFIED
Ustin, Susan L.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Yu, KangUNSPECIFIEDorcid.org/0000-0002-0686-6783UNSPECIFIED
Yao, YinkunUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Huang, ShanyuUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bareth, GeorgUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-451556
DOI: 10.1016/j.fcr.2013.09.023
Journal or Publication Title: Field Crop. Res.
Volume: 155
Page Range: S. 42 - 56
Date: 2014
Publisher: ELSEVIER SCIENCE BV
Place of Publication: AMSTERDAM
ISSN: 1872-6852
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Geosciences > Geographisches Institut
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PRECISION NITROGEN MANAGEMENT; VEGETATION INDEXES; GRAIN-YIELD; N STATUS; GEOGRAPHIC ZONES; REFLECTANCE; CROP; CHINA; SOIL; PLANTMultiple languages
AgronomyMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/45155

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item