Jünger, Michael, Mutzel, Petra ORCID: 0000-0001-7621-971X, Odenthal, Thomas and Scharbrodt, Mark (1998). The thickness of a minor-excluded class of graphs. Discrete Mathematics, 182 (1-3). pp. 169-176. Elsevier.
|
PDF
zpr95-201.pdf - Submitted Version Download (180kB) | Preview |
Abstract
The thickness problem on graphs is NP-hard and only few results concerning this graph invariant are known. Using a decomposition theorem of Truemper, we show that the thickness of the class of graphs without G12-minors is less than or equal to two (and therefore, the same is true for the more well-known class of the graphs without K5-minors). Consequently, the thickness of this class of graphs can be determined with a planarity testing algorithm in linear time.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-546990 | ||||||||||||||||||||
Journal or Publication Title: | Discrete Mathematics | ||||||||||||||||||||
Volume: | 182 | ||||||||||||||||||||
Number: | 1-3 | ||||||||||||||||||||
Page Range: | pp. 169-176 | ||||||||||||||||||||
Date: | 1998 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
Language: | German | ||||||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Institute of Computer Science | ||||||||||||||||||||
Subjects: | Data processing Computer science | ||||||||||||||||||||
Refereed: | Yes | ||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/54699 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |