Jungmann, Florian, Jorg, Tobias, Hahn, Felix ORCID: 0000-0001-5122-9014, dos Santos, Daniel Pinto, Jungmann, Stefanie Maria, Duber, Christoph, Mildenberger, Peter and Kloeckner, Roman ORCID: 0000-0001-5492-4792 (2021). Attitudes Toward Artificial Intelligence Among Radiologists, IT Specialists, and Industry. Acad. Radiol., 28 (6). S. 834 - 841. NEW YORK: ELSEVIER SCIENCE INC. ISSN 1878-4046
Full text not available from this repository.Abstract
Objectives: We investigated the attitudes of radiologists, information technology (IT) specialists, and industry representatives on artificial intelligence (AI) and its future impact on radiological work. Materials and Methods: During a national meeting for AI, eHealth, and IT infrastructure in 2019, we conducted a survey to obtain participants' attitudes. A total of 123 participants completed 28 items exploring AI usage in medicine. The Kruskal-Wallis test was used to identify differences between radiologists, IT specialists, and industry representatives. Results: The strongest agreement between all respondents occurred with the following: plausibility checks are important to understand the decisions of the AI (93% agreement), validation of AI algorithms is mandatory (91%), and medicine becomes more efficient in the age of AI (86%). In contrast, only 25% of the respondents had confidence in the AI results, and only 17% believed that medicine will become more human through the use of AI. The answers were significantly different between the three professions for four items: relevance for protocol selection in cross-sectional imaging (p = 0.034), medical societies should be involved in validation (p = 0.028), patients should be informed about the use of AI (p = 0.047), and AI should be part of medical education (p = 0.026). Conclusion: Currently, a discrepancy exists between high expectations for the future role of AI and low confidence in the results. This attitude was similar across all three groups. The demand for plausibility checks and the need to prove the usefulness in randomized controlled studies indicate what is needed in future research.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-572990 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.acra.2020.04.011 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Acad. Radiol. | ||||||||||||||||||||||||||||||||||||
Volume: | 28 | ||||||||||||||||||||||||||||||||||||
Number: | 6 | ||||||||||||||||||||||||||||||||||||
Page Range: | S. 834 - 841 | ||||||||||||||||||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||||||||||||||||||
Publisher: | ELSEVIER SCIENCE INC | ||||||||||||||||||||||||||||||||||||
Place of Publication: | NEW YORK | ||||||||||||||||||||||||||||||||||||
ISSN: | 1878-4046 | ||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/57299 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |