Kraft, Hanspeter, Regeta, Andriy and van Santen, Immanuel (2021). Is the Affine Space Determined by Its Automorphism Group? Int. Math. Res. Notices, 2021 (6). S. 4280 - 4301. OXFORD: OXFORD UNIV PRESS. ISSN 1687-0247
Full text not available from this repository.Abstract
In this note we study the problem of characterizing the complex affine space An via its automorphism group. We prove the following. Let X be an irreducible quasi-projective n-dimensional variety such that Aut(X) and Aut(A(n)) are isomorphic as abstract groups. If X is either quasi-affine and toric or X is smooth with Euler characteristic chi(X) not equal 0 and finite Picard group Pic(X), then X is isomorphic to A(n). The main ingredient is the following result. Let X be a smooth irreducible quasiprojective variety of dimension n with finite Pic(X). If X admits a faithful (Z/pZ)(n)-action for a prime p and chi(X) is not divisible by p, then the identity component of the centralizer Cent(Aut(X))((Z/pZ)(n)) is a torus.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-573975 | ||||||||||||||||
DOI: | 10.1093/imrn/rny281 | ||||||||||||||||
Journal or Publication Title: | Int. Math. Res. Notices | ||||||||||||||||
Volume: | 2021 | ||||||||||||||||
Number: | 6 | ||||||||||||||||
Page Range: | S. 4280 - 4301 | ||||||||||||||||
Date: | 2021 | ||||||||||||||||
Publisher: | OXFORD UNIV PRESS | ||||||||||||||||
Place of Publication: | OXFORD | ||||||||||||||||
ISSN: | 1687-0247 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/57397 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |