Sikiric, Mathieu Dutour, Madore, David A., Moustrou, Philippe and Vallentin, Frank (2021). Coloring the Voronoi tessellation of lattices. J. Lond. Math. Soc.-Second Ser., 104 (3). S. 1135 - 1172. HOBOKEN: WILEY. ISSN 1469-7750
Full text not available from this repository.Abstract
In this paper we define the chromatic number of a lattice: It is the least number of colors one needs to color the interiors of the cells of the Voronoi tessellation of a lattice so that no two cells sharing a facet are of the same color. We compute the chromatic number of the root lattices, their duals, and of the Leech lattice, we consider the chromatic number of lattices of Voronoi's first kind, and we investigate the asymptotic behavior of the chromatic number of lattices when the dimension tends to infinity. We introduce a spectral lower bound for the chromatic number of lattices in spirit of Hoffman's bound for finite graphs. We compute this bound for the root lattices and relate it to the character theory of the corresponding Lie groups.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-581479 | ||||||||||||||||||||
DOI: | 10.1112/jlms.12456 | ||||||||||||||||||||
Journal or Publication Title: | J. Lond. Math. Soc.-Second Ser. | ||||||||||||||||||||
Volume: | 104 | ||||||||||||||||||||
Number: | 3 | ||||||||||||||||||||
Page Range: | S. 1135 - 1172 | ||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||
Publisher: | WILEY | ||||||||||||||||||||
Place of Publication: | HOBOKEN | ||||||||||||||||||||
ISSN: | 1469-7750 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/58147 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |