References: |
Avellaneda, M., Levy, A., and Paras, A.: Pricing and hedging deriva- tive securities in markets with uncertain volatilities. Applied Mathematical Finance, 2(2):73–88, 1995.
Badura, C.: C++ solvers for sparse systems of linear equations, 1998. http://aam.mathematik.uni-freiburg.de/IAM/Research/ projectskr/lin_solver/.
Barenblatt, G. I.: Scaling, Self-similarity, and Intermediate Asymp- totics, volume 14 of Cambridge Texts in Applied Mathematics. Cambridge University Press, New York, 1996.
Bardi, M. and Dolcetta, I. C.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Modern Birkhäuser Classics. Springer, 1997.
Barles, G., Daher, C. H., and Romano, M.: Convergence of numerical schemes for degenerate parabolic equations arising in finance theory. Mathematical Models and Methods in Applied Sciences, 5(1):125–143, 1995.
Berman, A. and Plemmons, R. J.: Non-negative Matrices in the Mathematical Sciences, volume 9 of Classics in Applied Mathematics. Society for Industrial Mathematics, 1994.
Black, F. and Scholes, M.: The pricing of options and corporate liabil- ities. Journal of Political Economy, 81(3):637–654, 1973.
Brennan, M. J. and Schwartz, E. S.: The valuation of American put options. The Journal of Finance, 32(2):449–462, 1977.
Barles, G. and Souganidis, P. E.: Convergence of approximation schemes for fully non-linear second order equations. In 29 th IEEE Conference on Decision and Control, Honolulu, pages 2347–2349, 1990.
Cont, R. and Fonseca, J.: Dynamics of implied volatility surfaces. Quantitative Finance, 2(1):45–60, 2002.
Crandall, M. G., Ishii, H., and Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27(1):1–67, 1992.
Crandall, M. G. and Lions, P.-L.: Viscosity solutions of Hamilton- Jacobi equations. Transactions of the American Mathematical Society, 277(1):1–42, 1983.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: In- troduction to Algorithms. MIT Press, 3rd edition, 2001.
Deutsch, H. P.: Derivatives and Internal Models. Finance and Capital Markets Series. Palgrave Macmillan, 4th edition, 2009.
Dolcetta, I. C. and Lions, P. L. (editors): Viscosity Solutions and Applications. Lecture Notes in Mathematics. Springer, 1997.
Dupire, B.: Pricing with a smile. Risk, 7(1):18–20, 1994.
Evans, L. C.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. Oxford University Press, 2nd edition, 2010.
Feller, W.: An Introduction to Probability Theory and its Applications, volume 2 of Wiley Publication in Mathematical Statistics. Wiley, 2008.
Floudas, C. A. and Gounaris, C. E.: A review of recent advances in global optimization. Journal of Global Optimization, 45(1):3–38, 2009.
Forsyth, P. A. and Labahn, G.: Numerical methods for controlled Hamilton-Jacobi-Bellman pdes in finance. Journal of Computational Finance, 11(2):1–43, 2007.
Fletcher, R.: Practical Methods of Optimization. Wiley, 2nd edition, 2000.
Fleming, W. and Soner, H.: Controlled Markov Processes and Viscosity Solutions, volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, 2nd edition, 2006.
Forsyth, P. A. and Vetzal, K. R.: Quadratic convergence for valuing American options using a penalty method. SIAM Journal on Scientific Computing, 23(6):2095–2122, 2002.
Giles, M. and Carter, R.: Convergence analysis of Crank-Nicolson and Rannacher time-marching. Journal of Compuational Finance, 9(4):89– 112, 2006.
Genz, A.: Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing, 14(3):251–260, 2004.
Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of N P Completeness. W. H. Freeman & Co., 1990.
Golub, G. H. and Loan, C. F. van: Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996.
Haug, E. G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, 2006.
Heider, P.: A local least-squares method for solving nonlinear partial differential equations of second order. Numerische Mathematik, 111(3):351–375, 2009.
Heider, P.: Numerical methods for non-linear Black-Scholes equations. Applied Mathematical Finance, 17(1):59–81, 2010.
Heston, S. L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2):327–343, 1993.
Huang, Y., Forsyth, P. A., and Labahn, G.: Combined fixed point and policy iteration for HJB equations in finance. SIAM Journal on Numerical Analysis, 50(4):1861–1882, 2012.
Hastings, C., Hayward, J. T., and Wong, J. P.: Approximations for digital computers. A Research Study by the Rand Corporation, Princeton University Press, 1, 1955.
Horn, R. A. and Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, 1994.
Ikonen, S. and Toivanen, J.: Componentwise splitting methods for pricing American options under stochastic volatility. International Journal of Theoretical and Applied Finance, 10(2):331–361, 2007.
Jaillet, P., Lamberton, D., and Lapeyre, B.: Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae, 21(3):263–289, 1990.
Johnson, H.: Options on the maximum or the minimum of several assets. Journal of Financial and Quantitative Analysis, 22(3):277–283, 1987.
Kushner, H. J. and Dupuis, P.: Numerical Methods for Stochastic Control Problems in Continuous Time, volume 24 of Stochastic Modelling and Applied Probability. Springer, 2nd edition, 2001.
Kovalov, P., Linetsky, V., and Marcozzi, M.: Pricing multi-asset American options: A Finite Element method-of-lines with smooth penalty. Journal of Scientific Computing, 33(3):209–237, 2007.
Kwok, Y.-K.: Mathematical Models of Financial Derivatives. Springer Finance. Springer, 2nd edition, 2008.
Levy, G.: Computational Finance: Numerical Methods for Pricing Financial Instruments. Butterworth-Heinemann, 2004.
Lions, P. L.: Optimal control of diffusion processes and Hamilton- Jacobi-Bellman equations part 2: viscosity solutions and uniqueness. Communications in Partial Differential Equations, 8(11):1229–1276, 1983.
Lamberton, D. and Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. CRC Financial Mathematics Series. Chapman & Hall, check edition, 2008.
Leentvaar, C. C. W. and Oosterlee, C. W.: Multi-asset option pric- ing using a parallel Fourier-based technique. Journal of Computational Finance, 12(1):1–26, 2008.
Longin, F. and Solnik, B.: Is the correlation in international equity returns constant: 1960 - 1990? Journal of International Money and Finance, 14(1):3–26, 1995.
Lyons, T. J.: Uncertain volatility and the risk-free synthesis of deriva- tives. Applied Mathematical Finance, 2(2):117–133, 1995.
Merton, R. C.: Theory of rational option pricing. The Bell Journal of Economics and Managment Science, 4(1):141–183, 1973.
Pooley, D. M., Forsyth, P. A., and Vetzal, K. R.: Numerical conver- gence properties of option pricing pdes with uncertain volatility. IMA Journal of Numerical Analysis, 23(2):241–267, 2003.
Pooley, D. M., Forsyth, P. A., and Vetzal, K. R.: Two factor option pricing with uncertain volatility. Lecture Notes on Computer Science, pages 158–167, 2003.
Pooley, D. M.: Numerical methods for nonlinear equations in option pricing. PhD thesis, University of Waterloo, Canada, 2003.
Pardalos, P. M. and Vavasis, S. A.: Quadratic programming with one negative eigenvalue is NP-hard. Journal of Global Optimization, 1(1):15–22, 1991.
Pooley, D. M., Vetzal, K. R., and Forsyth, P. A.: Convergence remedies for non-smooth payoffs in option pricing. Journal of Computational Finance, 6(4):25–40, 2003.
Rannacher, R.: Finite Element solution of diffusion problems with irregular data. Numerische Mathematik, 43(2):309–327, 1984.
Randall, C. and Tavella, D.: Pricing Financial Instruments - The Finite Difference Method. Wiley, 2000.
Romagnoli, S. and Vargiolu, T.: Robustness of the Black-Scholes approach in the case of options on several assets. Finance and Stochastics, 4(3):325–341, 2000.
Reiß, O. and Wystup, U.: Computing option price sensitivities using homogeneity and other tricks. The Journal of Derivatives, 9(2):41–53, 2001.
Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, 2nd edition, 2003.
Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis, volume 12 of Texts in Applied Mathematics. Springer, 3rd edition, 2002.
Schaeling, D.: Numerik nichtlinearer Black-Scholes-Modelle für amerikanische Optionen. Diploma thesis, University of Cologne, 2010.
Seydel, R. U.: Tools for Computational Finance. Universitext. Springer, 5th edition, 2012.
Schaeling, D. and Heider, P.: Numerical methods for American options in non-linear Black-Scholes models. submitted, 2011.
Shimko, D.: Bounds of probability. Risk, 6(4):33–37, 1993.
Shreve, S. E.: Stochastic Calculus for Finance II: Continuous-Time Models. Springer Finance. Springer, 2004.
Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, 2nd edition, 1986.
Stulz, R. M.: Options on the minimum or the maximum of two risky assets: Analysis and applications. Journal of Financial Economics, 10(2):161–185, 1982.
Vargiolu, T.: Existence, uniqueness and smoothness for the Black- Scholes-Barenblatt equation. Technical Report 5, Universita di Padova, Department of Pure and Applied Mathematics, www.math.unipd.it/ ∼vargiolu/BSB.pdf, 2001.
Vorst, H. A. van der: Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing, 13(2):631–644, 1992.
Wilmott, P., Dewynne, J., and Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, 2000.
Wang, J. and Forsyth, P. A.: Maximal use of central differencing for Hamilton-
Jacobi-Bellman pdes in finance. SIAM Journal on Numerical Analysis, 46(3):1580–1601, 2008.
Wang, J. and Forsyth, P. A.: Numerical solution of the Hamilton- Jacobi-Bellman formulation for continuous time mean variance asset allocation. Journal of Economic Dynamics and Control, 34(2):207 – 230, 2010.
Witte, J. H. and Reisinger, C.: A penalty method for the numerical solution of Hamilton-Jacobi-Bellman (HJB) equations in finance. SIAM Journal on Numerical Analysis, 49(1):213–231, 2011.
Zvan, R., Forsyth, P. A., and Vetzal, K. R.: A Finite Volume approach for contingent claims valuation. IMA Journal of Numerical Analysis, 21(3):703–731, 2001.
Zvan, R., Forsyth, P. A., and Vetzal, K. R.: Negative coefficients in two-factor option pricing models. Journal of Computational Finance, 7(1):37–74, 2003.
Zhang, K., Wang, S., Yang, X. Q., and Teo, K. L.: A power penalty approach to numerical solutions of two-asset American options. Numerical Mathematics, A Journal of Chinese Universities (English Series), 2(2):202–223, 2009. |