Huang, Chien-Chung, Mari, Mathieu, Mathieu, Claire, Schewior, Kevin and Vygen, Jens (2021). AN APPROXIMATION ALGORITHM FOR FULLY PLANAR EDGE-DISJOINT PATHS. SIAM Discret. Math., 35 (2). S. 752 - 770. PHILADELPHIA: SIAM PUBLICATIONS. ISSN 1095-7146

Full text not available from this repository.

Abstract

We devise a constant-factor approximation algorithm for the maximization version of the edge-disjoint paths problem if the supply graph together with the demand edges forms a planar graph. By planar duality, this is equivalent to packing cuts in a planar graph such that each cut contains exactly one demand edge. We also show that the natural linear programming relaxations have constant integrality gap, yielding an approximate max-multiflow min-multicut theorem.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Huang, Chien-ChungUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mari, MathieuUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mathieu, ClaireUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schewior, KevinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Vygen, JensUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-590416
DOI: 10.1137/20M1319401
Journal or Publication Title: SIAM Discret. Math.
Volume: 35
Number: 2
Page Range: S. 752 - 770
Date: 2021
Publisher: SIAM PUBLICATIONS
Place of Publication: PHILADELPHIA
ISSN: 1095-7146
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
ODD CYCLES; MULTICUT; FLOW; THEOREMS; HARDNESS; RATIO; CUTSMultiple languages
Mathematics, AppliedMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/59041

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item