Lennartz, Simon, Mager, Alina, Grosse Hokamp, Nils, Schafer, Sebastian, Zopfs, David, Maintz, David, Reinhardt, Hans Christian, Thomas, Roman K., Caldeira, Liliana ORCID: 0000-0002-9530-5899 and Persigehl, Thorsten (2021). Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules. Cancer Imaging, 21 (1). LONDON: BMC. ISSN 1470-7330
Full text not available from this repository.Abstract
Background The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. Methods 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included: 85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98 patients with 425 lung metastases (LM) verified by histopathology, F-18-FDG-PET-CT or unequivocal change during treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy, kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier. Results Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine concentration) was poor (AUC=0.65, 0.58, respectively). Conclusions First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful iodine map-derived feature slightly, yet insignificantly increased classification accuracy compared to classification based on conventional image features only.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-592943 | ||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1186/s40644-020-00374-3 | ||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Cancer Imaging | ||||||||||||||||||||||||||||||||||||||||||||
Volume: | 21 | ||||||||||||||||||||||||||||||||||||||||||||
Number: | 1 | ||||||||||||||||||||||||||||||||||||||||||||
Date: | 2021 | ||||||||||||||||||||||||||||||||||||||||||||
Publisher: | BMC | ||||||||||||||||||||||||||||||||||||||||||||
Place of Publication: | LONDON | ||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1470-7330 | ||||||||||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/59294 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |