Curien, Gilles, Lyska, Dagmar ORCID: 0000-0002-9175-6334, Guglielmino, Erika, Westhoff, Phillip, Janetzko, Janina, Tardif, Marianne, Hallopeau, Clement ORCID: 0000-0002-0692-2407, Brugiere, Sabine, Dal Bo, Davide, Decelle, Johan ORCID: 0000-0002-4343-8358, Gallet, Benoit, Falconet, Denis, Carone, Michele ORCID: 0000-0002-5561-0792, Remacle, Claire ORCID: 0000-0002-5016-9547, Ferro, Myriam, Weber, Andreas P. M. and Finazzi, Giovanni (2021). Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism. New Phytol., 231 (1). S. 326 - 339. HOBOKEN: WILEY. ISSN 1469-8137

Full text not available from this repository.

Abstract

Galdieria sulphuraria is a cosmopolitan microalga found in volcanic hot springs and calderas. It grows at low pH in photoautotrophic (use of light as a source of energy) or heterotrophic (respiration as a source of energy) conditions, using an unusually broad range of organic carbon sources. Previous data suggested that G. sulphuraria cannot grow mixotrophically (simultaneously exploiting light and organic carbon as energy sources), its photosynthetic machinery being repressed by organic carbon. Here, we show that G. sulphuraria SAG21.92 thrives in photoautotrophy, heterotrophy and mixotrophy. By comparing growth, biomass production, photosynthetic and respiratory performances in these three trophic modes, we show that addition of organic carbon to cultures (mixotrophy) relieves inorganic carbon limitation of photosynthesis thanks to increased CO2 supply through respiration. This synergistic effect is lost when inorganic carbon limitation is artificially overcome by saturating photosynthesis with added external CO2. Proteomic and metabolic profiling corroborates this conclusion suggesting that mixotrophy is an opportunistic mechanism to increase intracellular CO2 concentration under physiological conditions, boosting photosynthesis by enhancing the carboxylation activity of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and decreasing photorespiration. We discuss possible implications of these findings for the ecological success of Galdieria in extreme environments and for biotechnological applications.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Curien, GillesUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lyska, DagmarUNSPECIFIEDorcid.org/0000-0002-9175-6334UNSPECIFIED
Guglielmino, ErikaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Westhoff, PhillipUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Janetzko, JaninaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Tardif, MarianneUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hallopeau, ClementUNSPECIFIEDorcid.org/0000-0002-0692-2407UNSPECIFIED
Brugiere, SabineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Dal Bo, DavideUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Decelle, JohanUNSPECIFIEDorcid.org/0000-0002-4343-8358UNSPECIFIED
Gallet, BenoitUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Falconet, DenisUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Carone, MicheleUNSPECIFIEDorcid.org/0000-0002-5561-0792UNSPECIFIED
Remacle, ClaireUNSPECIFIEDorcid.org/0000-0002-5016-9547UNSPECIFIED
Ferro, MyriamUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Weber, Andreas P. M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Finazzi, GiovanniUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-593894
DOI: 10.1111/nph.17359
Journal or Publication Title: New Phytol.
Volume: 231
Number: 1
Page Range: S. 326 - 339
Date: 2021
Publisher: WILEY
Place of Publication: HOBOKEN
ISSN: 1469-8137
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE; ALGA CYANIDIOSCHYZON MEROLAE; THERMOPHILIC RED ALGA; ORGANIC-CARBON; INORGANIC CARBON; MOLECULAR-BASIS; ELECTRON FLOW; PHOTOSYNTHESIS; LIGHT; CO2Multiple languages
Plant SciencesMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/59389

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item