van Meegen, Alexander ORCID: 0000-0003-2766-3982, Kuehn, Tobias and Helias, Moritz ORCID: 0000-0002-0404-8656 (2021). Large-Deviation Approach to Random Recurrent Neuronal Networks: Parameter Inference and Fluctuation-Induced Transitions. Phys. Rev. Lett., 127 (15). COLLEGE PK: AMER PHYSICAL SOC. ISSN 1079-7114

Full text not available from this repository.

Abstract

We here unify the field-theoretical approach to neuronal networks with large deviations theory. For a prototypical random recurrent network model with continuous-valued units, we show that the effective action is identical to the rate function and derive the latter using field theory. This rate function takes the form of a Kullback-Leibler divergence which enables data-driven inference of model parameters and calculation of fluctuations beyond mean-field theory. Lastly, we expose a regime with fluctuation-induced transitions between mean-field solutions.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
van Meegen, AlexanderUNSPECIFIEDorcid.org/0000-0003-2766-3982UNSPECIFIED
Kuehn, TobiasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Helias, MoritzUNSPECIFIEDorcid.org/0000-0002-0404-8656UNSPECIFIED
URN: urn:nbn:de:hbz:38-595661
DOI: 10.1103/PhysRevLett.127.158302
Journal or Publication Title: Phys. Rev. Lett.
Volume: 127
Number: 15
Date: 2021
Publisher: AMER PHYSICAL SOC
Place of Publication: COLLEGE PK
ISSN: 1079-7114
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
DYNAMICS; CHAOSMultiple languages
Physics, MultidisciplinaryMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/59566

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item