Layer, Natalie ORCID: 0000-0001-5915-4723 (2023). Audiovisual speech perception in cochlear implant patients. PhD thesis, Universität zu Köln.
PDF
Dissertation_Natalie_Layer_angepasst.pdf - Accepted Version Bereitstellung unter der CC-Lizenz: Creative Commons Attribution Non-commercial No Derivatives. Download (17MB) |
Abstract
Hearing with a cochlear implant (CI) is very different compared to a normal-hearing (NH) experience, as the CI can only provide limited auditory input. Nevertheless, the central auditory system is capable of learning how to interpret such limited auditory input such that it can extract meaningful information within a few months after implant switch-on. The capacity of the auditory cortex to adapt to new auditory stimuli is an example of intra-modal plasticity — changes within a sensory cortical region as a result of altered statistics of the respective sensory input. However, hearing deprivation before implantation and restoration of hearing capacities after implantation can also induce cross-modal plasticity — changes within a sensory cortical region as a result of altered statistics of a different sensory input. Thereby, a preserved cortical region can, for example, support a deprived cortical region, as in the case of CI users which have been shown to exhibit cross-modal visual-cortex activation for purely auditory stimuli. Before implantation, during the period of hearing deprivation, CI users typically rely on additional visual cues like lip-movements for understanding speech. Therefore, it has been suggested that CI users show a pronounced binding of the auditory and visual systems, which may allow them to integrate auditory and visual speech information more efficiently. The projects included in this thesis investigate auditory, and particularly audiovisual speech processing in CI users. Four event-related potential (ERP) studies approach the matter from different perspectives, each with a distinct focus. The first project investigates how audiovisually presented syllables are processed by CI users with bilateral hearing loss compared to NH controls. Previous ERP studies employing non-linguistic stimuli and studies using different neuroimaging techniques found distinct audiovisual interactions in CI users. However, the precise timecourse of cross-modal visual-cortex recruitment and enhanced audiovisual interaction for speech related stimuli is unknown. With our ERP study we fill this gap, and we present differences in the timecourse of audiovisual interactions as well as in cortical source configurations between CI users and NH controls. The second study focuses on auditory processing in single-sided deaf (SSD) CI users. SSD CI patients experience a maximally asymmetric hearing condition, as they have a CI on one ear and a contralateral NH ear. Despite the intact ear, several behavioural studies have demonstrated a variety of beneficial effects of restoring binaural hearing, but there are only few ERP studies which investigate auditory processing in SSD CI users. Our study investigates whether the side of implantation affects auditory processing and whether auditory processing via the NH ear of SSD CI users works similarly as in NH controls. Given the distinct hearing conditions of SSD CI users, the question arises whether there are any quantifiable differences between CI user with unilateral hearing loss and bilateral hearing loss. In general, ERP studies on SSD CI users are rather scarce, and there is no study on audiovisual processing in particular. Furthermore, there are no reports on lip-reading abilities of SSD CI users. To this end, in the third project we extend the first study by including SSD CI users as a third experimental group. The study discusses both differences and similarities between CI users with bilateral hearing loss and CI users with unilateral hearing loss as well as NH controls and provides — for the first time — insights into audiovisual interactions in SSD CI users. The fourth project investigates the influence of background noise on audiovisual interactions in CI users and whether a noise-reduction algorithm can modulate these interactions. It is known that in environments with competing background noise listeners generally rely more strongly on visual cues for understanding speech and that such situations are particularly difficult for CI users. As shown in previous auditory behavioural studies, the recently introduced noise-reduction algorithm "ForwardFocus" can be a useful aid in such cases. However, the questions whether employing the algorithm is beneficial in audiovisual conditions as well and whether using the algorithm has a measurable effect on cortical processing have not been investigated yet. In this ERP study, we address these questions with an auditory and audiovisual syllable discrimination task. Taken together, the projects included in this thesis contribute to a better understanding of auditory and especially audiovisual speech processing in CI users, revealing distinct processing strategies employed to overcome the limited input provided by a CI. The results have clinical implications, as they suggest that clinical hearing assessments, which are currently purely auditory, should be extended to audiovisual assessments. Furthermore, they imply that rehabilitation including audiovisual training methods may be beneficial for all CI user groups for quickly achieving the most effective CI implantation outcome.
Item Type: | Thesis (PhD thesis) | ||||||||||||||||||
Translated title: |
|
||||||||||||||||||
Translated abstract: |
|
||||||||||||||||||
Creators: |
|
||||||||||||||||||
URN: | urn:nbn:de:hbz:38-652282 | ||||||||||||||||||
Date: | 2023 | ||||||||||||||||||
Language: | English | ||||||||||||||||||
Faculty: | Faculty of Medicine | ||||||||||||||||||
Divisions: | Faculty of Medicine > Hals-Nasen-Ohrenheilkunde > Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde | ||||||||||||||||||
Subjects: | Language, Linguistics Medical sciences Medicine Natural sciences and mathematics |
||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||
Date of oral exam: | 9 March 2023 | ||||||||||||||||||
Referee: |
|
||||||||||||||||||
Refereed: | Yes | ||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/65228 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |