Tjiang, Noah ORCID: 0000-0002-9957-0198 and Zempel, Hans (2022). A mitochondria cluster at the proximal axon initial segment controls axodendritic TAU trafficking in rodent primary and human iPSC-derived neurons. Cell. Mol. Life Sci., 79 (2). BASEL: SPRINGER BASEL AG. ISSN 1420-9071

Full text not available from this repository.

Abstract

Loss of neuronal polarity and missorting of the axonal microtubule-associated-protein TAU are hallmarks of Alzheimer's disease (AD) and related tauopathies. Impairment of mitochondrial function is causative for various mitochondriopathies, but the role of mitochondria in tauopathies and in axonal TAU-sorting is unclear. The axon-initial-segment (AIS) is vital for maintaining neuronal polarity, action potential generation, and-here important-TAU-sorting. Here, we investigate the role of mitochondria in the AIS for maintenance of TAU cellular polarity. Using not only global and local mitochondria impairment via inhibitors of the respiratory chain and a locally activatable protonophore/uncoupler, but also live-cell-imaging and photoconversion methods, we specifically tracked and selectively impaired mitochondria in the AIS in primary mouse and human iPSC-derived forebrain/cortical neurons, and assessed somatic presence of TAU. Global application of mitochondrial toxins efficiently induced tauopathy-like TAU-missorting, indicating involvement of mitochondria in TAU-polarity. Mitochondria show a biased distribution within the AIS, with a proximal cluster and relative absence in the central AIS. The mitochondria of this cluster are largely immobile and only sparsely participate in axonal mitochondria-trafficking. Locally constricted impairment of the AIS-mitochondria-cluster leads to detectable increases of somatic TAU, reminiscent of AD-like TAU-missorting. Mechanistically, mitochondrial impairment sufficient to induce TAU-missorting results in decreases of calcium oscillation but increases in baseline calcium, yet chelating intracellular calcium did not prevent mitochondrial impairment-induced TAU-missorting. Stabilizing microtubules via taxol prevented TAU-missorting, hinting towards a role for impaired microtubule dynamics in mitochondrial-dysfunction-induced TAU-missorting. We provide evidence that the mitochondrial distribution within the proximal axon is biased towards the proximal AIS and that proper function of this newly described mitochondrial cluster may be essential for the maintenance of TAU polarity. Mitochondrial impairment may be an upstream event in and therapeutic target for AD/tauopathy.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Tjiang, NoahUNSPECIFIEDorcid.org/0000-0002-9957-0198UNSPECIFIED
Zempel, HansUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-659558
DOI: 10.1007/s00018-022-04150-3
Journal or Publication Title: Cell. Mol. Life Sci.
Volume: 79
Number: 2
Date: 2022
Publisher: SPRINGER BASEL AG
Place of Publication: BASEL
ISSN: 1420-9071
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
AMYLOID-BETA; DIFFUSION BARRIER; ACCUMULATION; PROTEIN; PART; TRANSPORT; POLARITY; PROGRESS; CELLSMultiple languages
Biochemistry & Molecular Biology; Cell BiologyMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/65955

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item