Lindsay, Nicholas (2022). Hamiltonian circle actions on complete intersections. Bull. London Math. Soc., 54 (1). S. 206 - 213. HOBOKEN: WILEY. ISSN 1469-2120
Full text not available from this repository.Abstract
We study the problem of determining which diffeomorphism classes of Kahler manifolds admit a Hamiltonian circle action. Our main result is the following: Let M$M$ be a closed symplectic manifold, diffeomorphic to a complete intersection with complex dimension 4k$4k$, having a Hamiltonian circle action such that each component of the fixed-point set is an isolated fixed point or has dimension 2mod4$2 \mod {4}$. Then M$M$ is diffeomorphic to CP4k$\mathbb {CP}<^>{4k}$, a quadric Q subset of CP4k+1$Q \subset \mathbb {CP}<^>{4k+1}$ or an intersection of two quadrics Q1 boolean AND Q2 subset of CP4k+2$Q_1 \cap Q_2 \subset \mathbb {CP}<^>{4k+2}$.
Item Type: | Journal Article | ||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-661540 | ||||||||
DOI: | 10.1112/blms.12572 | ||||||||
Journal or Publication Title: | Bull. London Math. Soc. | ||||||||
Volume: | 54 | ||||||||
Number: | 1 | ||||||||
Page Range: | S. 206 - 213 | ||||||||
Date: | 2022 | ||||||||
Publisher: | WILEY | ||||||||
Place of Publication: | HOBOKEN | ||||||||
ISSN: | 1469-2120 | ||||||||
Language: | English | ||||||||
Faculty: | Unspecified | ||||||||
Divisions: | Unspecified | ||||||||
Subjects: | no entry | ||||||||
Uncontrolled Keywords: |
|
||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/66154 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |