Hsiao, Chin-Yu and Savale, Nikhil ORCID: 0000-0001-7331-4527 (2022). Bergman Szego kernel asymptotics in weakly pseudoconvex finite type cases. J. Reine Angew. Math., 2022 (791). S. 173 - 224. BERLIN: WALTER DE GRUYTER GMBH. ISSN 1435-5345

Full text not available from this repository.

Abstract

We construct a pointwise Boutet de Monvel-Sjostrand parametrix for the Szego kernel of a weakly pseudoconvex three-dimensional CR manifold of finite type assuming the range of its tangential CR operator to be closed; thereby extending the earlier analysis of Christ. This particularly extends Fefferman's boundary asymptotics of the Bergman kernel to weakly pseudoconvex domains in C-2, in agreement with D'Angelo's example. Finally, our results generalize a three-dimensional CR embedding theorem of Lempert.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Hsiao, Chin-YuUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Savale, NikhilUNSPECIFIEDorcid.org/0000-0001-7331-4527UNSPECIFIED
URN: urn:nbn:de:hbz:38-664595
DOI: 10.1515/crelle-2022-0044
Journal or Publication Title: J. Reine Angew. Math.
Volume: 2022
Number: 791
Page Range: S. 173 - 224
Date: 2022
Publisher: WALTER DE GRUYTER GMBH
Place of Publication: BERLIN
ISSN: 1435-5345
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
BOUNDARY-BEHAVIOR; CR-STRUCTURES; MARGINMultiple languages
MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/66459

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item