Neef, Klaus, Drey, Florian, Lepperhof, Vera, Wahlers, Thorsten, Hescheler, Jurgen, Choi, Yeong-Hoon and Saric, Tomo (2022). Co-transplantation of Mesenchymal Stromal Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improves Cardiac Function After Myocardial Damage. Front. Cardiovasc. Med., 8. LAUSANNE: FRONTIERS MEDIA SA. ISSN 2297-055X
Full text not available from this repository.Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) represent an attractive resource for cardiac regeneration. However, survival and functional integration of transplanted iPS-CM is poor and remains a major challenge for the development of effective therapies. We hypothesized that paracrine effects of co-transplanted mesenchymal stromal cells (MSCs) augment the retention and therapeutic efficacy of iPS-CM in a mouse model of myocardial infarction (MI). To test this, either iPS-CM, MSC, or both cell types were transplanted into the cryoinfarction border zone of syngeneic mice immediately after injury. Bioluminescence imaging (BLI) of iPS-CM did not confirm enhanced retention by co-application of MSC during the 28-day follow-up period. However, histological analyses of hearts 28 days after cell transplantation showed that MSC increased the fraction of animals with detectable iPS-CM by 2-fold. Cardiac MRI analyses showed that from day 14 after transplantation on, the animals that have received cells had a significantly higher left ventricular ejection fraction (LVEF) compared to the placebo group. There was no statistically significant difference in LVEF between animals transplanted only with iPS-CM or only with MSC. However, combined iPS-CM and MSC transplantation resulted in higher LVEF compared to transplantation of single-cell populations during the whole observation period. Histological analyses revealed that MSC increased the capillarization in the myocardium when transplanted alone or with iPS-CM and decreased the infarct scar area only when transplanted in combination with iPS-CM. These results indicate that co-transplantation of iPS-CM and MSC improves cardiac regeneration after cardiac damage, demonstrating the potential of combining multiple cell types for increasing the efficacy of future cardiac cell therapies.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-669740 | ||||||||||||||||||||||||||||||||
DOI: | 10.3389/fcvm.2021.794690 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Front. Cardiovasc. Med. | ||||||||||||||||||||||||||||||||
Volume: | 8 | ||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||
Publisher: | FRONTIERS MEDIA SA | ||||||||||||||||||||||||||||||||
Place of Publication: | LAUSANNE | ||||||||||||||||||||||||||||||||
ISSN: | 2297-055X | ||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/66974 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |