Lussem, Ulrike, Bolten, Andreas, Kleppert, Ireneusz, Jasper, Joerg, Gnyp, Martin Leon ORCID: 0000-0002-5702-4914, Schellberg, Juergen and Bareth, Georg (2022). Herbage Mass, N Concentration, and N Uptake of Temperate Grasslands Can Adequately Be Estimated from UAV-Based Image Data Using Machine Learning. Remote Sens., 14 (13). BASEL: MDPI. ISSN 2072-4292
Full text not available from this repository.Abstract
Precise and timely information on biomass yield and nitrogen uptake in intensively managed grasslands are essential for sustainable management decisions. Imaging sensors mounted on unmanned aerial vehicles (UAVs) along with photogrammetric structure-from-motion processing can provide timely data on crop traits rapidly and non-destructively with a high spatial resolution. The aim of this multi-temporal field study is to estimate aboveground dry matter yield (DMY), nitrogen concentration (N%) and uptake (Nup) of temperate grasslands from UAV-based image data using machine learning (ML) algorithms. The study is based on a two-year dataset from an experimental grassland trial. The experimental setup regarding climate conditions, N fertilizer treatments and slope yielded substantial variations in the dataset, covering a considerable amount of naturally occurring differences in the biomass and N status of grasslands in temperate regions with similar management strategies. Linear regression models and three ML algorithms, namely, random forest (RF), support vector machine (SVM), and partial least squares (PLS) regression were compared with and without a combination of both structural (sward height; SH) and spectral (vegetation indices and single bands) features. Prediction accuracy was quantified using a 10-fold 5-repeat cross-validation (CV) procedure. The results show a significant improvement of prediction accuracy when all structural and spectral features are combined, regardless of the algorithm. The PLS models were outperformed by their respective RF and SVM counterparts. At best, DMY was predicted with a median RMSECV of 197 kg ha(-1), N% with a median RMSECV of 0.32%, and Nup with a median RMSECV of 7 kg ha(-1). Furthermore, computationally less expensive models incorporating, e.g., only the single multispectral camera bands and SH metrics, or selected features based on variable importance achieved comparable results to the overall best models.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-670215 | ||||||||||||||||||||||||||||||||
DOI: | 10.3390/rs14133066 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Remote Sens. | ||||||||||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||||||||||
Number: | 13 | ||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||
Publisher: | MDPI | ||||||||||||||||||||||||||||||||
Place of Publication: | BASEL | ||||||||||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/67021 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |