Antoniadis, Antonios ORCID: 0000-0003-2152-7883, Hoeksma, Ruben ORCID: 0000-0002-6553-7242, Kisfaludi-Bak, Sandor ORCID: 0000-0002-6856-2902 and Schewior, Kevin ORCID: 0000-0003-2236-0210 (2022). Online search for a hyperplane in high-dimensional Euclidean space. Inf. Process. Lett., 177. AMSTERDAM: ELSEVIER. ISSN 1872-6119

Full text not available from this repository.

Abstract

We consider the online search problem in which a server starting at the origin of a d-dimensional Euclidean space has to find an arbitrary hyperplane. The best-possible competitive ratio and the length of the shortest curve from which each point on the d dimensional unit sphere can be seen are within a constant factor of each other. We show that this length is in 1(d) & AND; O(d(3/2)).(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Antoniadis, AntoniosUNSPECIFIEDorcid.org/0000-0003-2152-7883UNSPECIFIED
Hoeksma, RubenUNSPECIFIEDorcid.org/0000-0002-6553-7242UNSPECIFIED
Kisfaludi-Bak, SandorUNSPECIFIEDorcid.org/0000-0002-6856-2902UNSPECIFIED
Schewior, KevinUNSPECIFIEDorcid.org/0000-0003-2236-0210UNSPECIFIED
URN: urn:nbn:de:hbz:38-672608
DOI: 10.1016/j.ipl.2022.106262
Journal or Publication Title: Inf. Process. Lett.
Volume: 177
Date: 2022
Publisher: ELSEVIER
Place of Publication: AMSTERDAM
ISSN: 1872-6119
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
Computer Science, Information SystemsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/67260

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item