Barmeier, Severin ORCID: 0000-0002-3779-2828 and Schmitt, Philipp (2023). Strict Quantization of Polynomial Poisson Structures. Commun. Math. Phys., 398 (3). S. 1085 - 1128. NEW YORK: SPRINGER. ISSN 1432-0916
Full text not available from this repository.Abstract
We show how combinatorial star products can be used to obtain strict deformation quantizations of polynomial Poisson structures on R-d, generalizing known results for constant and linear Poisson structures to polynomial Poisson structures of arbitrary degree. We give several examples of nonlinear Poisson structures and construct explicit formal star products whose deformation parameter can be evaluated to any real value of (h) over bar, giving strict quantizations on the space of analytic functions on R-d with infinite radius of convergence. We also address further questions such as continuity of the classical limit (h) over bar -> 0, compatibility with *-involutions, and the existence of positive linear functionals. The latter can be used to realize the strict quantizations as *-algebras of operators on a pre-Hilbert space which we demonstrate in a concrete example.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-672778 | ||||||||||||
DOI: | 10.1007/s00220-022-04541-4 | ||||||||||||
Journal or Publication Title: | Commun. Math. Phys. | ||||||||||||
Volume: | 398 | ||||||||||||
Number: | 3 | ||||||||||||
Page Range: | S. 1085 - 1128 | ||||||||||||
Date: | 2023 | ||||||||||||
Publisher: | SPRINGER | ||||||||||||
Place of Publication: | NEW YORK | ||||||||||||
ISSN: | 1432-0916 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/67277 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |