Haugland, Johanne ORCID: 0000-0003-3128-4715, Jacobsen, Karin M. and Schroll, Sibylle ORCID: 0000-0001-9618-7647 (2022). The role of gentle algebras in higher homological algebra. Forum Math., 34 (5). S. 1255 - 1276. BERLIN: WALTER DE GRUYTER GMBH. ISSN 1435-5337

Full text not available from this repository.

Abstract

We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra Lambda contains a d-cluster tilting subcategory for some d >= 2, then. is a radical square zero Nakayama algebra. This gives a complete classification of weakly d-representation finite gentle algebras. In the second part, we use a geometric model of the derived category to prove a similar result in the triangulated setup. More precisely, we show that if D-b(Lambda) contains a d-cluster tilting subcategory that is closed under [ d], then Lambda is derived equivalent to an algebra of Dynkin type A. Furthermore, our approach gives a geometric characterization of all d-cluster tilting subcategories of D-b(Lambda) that are closed under [d].

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Haugland, JohanneUNSPECIFIEDorcid.org/0000-0003-3128-4715UNSPECIFIED
Jacobsen, Karin M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schroll, SibylleUNSPECIFIEDorcid.org/0000-0001-9618-7647UNSPECIFIED
URN: urn:nbn:de:hbz:38-673285
DOI: 10.1515/forum-2021-0311
Journal or Publication Title: Forum Math.
Volume: 34
Number: 5
Page Range: S. 1255 - 1276
Date: 2022
Publisher: WALTER DE GRUYTER GMBH
Place of Publication: BERLIN
ISSN: 1435-5337
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
REPRESENTATION-FINITE ALGEBRAS; TILTED ALGEBRAS; STABLE CATEGORIES; AUSLANDER; EXTENSIONS; MODULESMultiple languages
Mathematics, Applied; MathematicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/67328

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item