Bringmann, Kathrin, Craig, William, Males, Joshua and Ono, Ken (2022). Distributions on partitions arising from Hilbert schemes and hook lengths. Forum Math. Sigma, 10. CAMBRIDGE: CAMBRIDGE UNIV PRESS. ISSN 2050-5094
Full text not available from this repository.Abstract
Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions when sorted by these invariants in congruence classes. We consider the prominent situations that arise from extensions of the Nekrasov-Okounkov hook product formula and from Betti numbers of various Hilbert schemes of n points on C-2. For the Hilbert schemes, we prove that homology is equidistributed as n -> infinity. For t-hooks, we prove distributions that are often not equidistributed. The cases where t is an element of {2, 3} stand out, as there are congruence classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest. We determine the asymptotics, near roots of unity, of the ubiquitous infinite products F-1 (xi; q) := Pi(infinity)(n=1) (1- xi q(n)), F-2 (xi; q) := Pi(infinity)(n=1) (1- (xi q)(n)) and F-3 (xi; q) := Pi(infinity)(n=1) (1- xi(-1)(xi q)(n)).
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-674602 | ||||||||||||||||||||
DOI: | 10.1017/fms.2022.45 | ||||||||||||||||||||
Journal or Publication Title: | Forum Math. Sigma | ||||||||||||||||||||
Volume: | 10 | ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Publisher: | CAMBRIDGE UNIV PRESS | ||||||||||||||||||||
Place of Publication: | CAMBRIDGE | ||||||||||||||||||||
ISSN: | 2050-5094 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/67460 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |