Spyrantis, Andrea ORCID: 0000-0002-7635-6295, Woebbecke, Tirza, Ruess, Daniel, Constantinescu, Anne, Gierich, Andreas, Luyken, Klaus, Visser-Vandewalle, Veerle, Herrmann, Eva, Gessler, Florian ORCID: 0000-0002-3471-0575, Czabanka, Marcus, Treuer, Harald, Ruge, Maximilian and Freiman, Thomas M. (2022). Accuracy of Robotic and Frame-Based Stereotactic Neurosurgery in a Phantom Model. Front. Neurorobotics, 16. LAUSANNE: FRONTIERS MEDIA SA. ISSN 1662-5218

Full text not available from this repository.

Abstract

BackgroundThe development of robotic systems has provided an alternative to frame-based stereotactic procedures. The aim of this experimental phantom study was to compare the mechanical accuracy of the Robotic Surgery Assistant (ROSA) and the Leksell stereotactic frame by reducing clinical and procedural factors to a minimum. MethodsTo precisely compare mechanical accuracy, a stereotactic system was chosen as reference for both methods. A thin layer CT scan with an acrylic phantom fixed to the frame and a localizer enabling the software to recognize the coordinate system was performed. For each of the five phantom targets, two different trajectories were planned, resulting in 10 trajectories. A series of five repetitions was performed, each time based on a new CT scan. Hence, 50 trajectories were analyzed for each method. X-rays of the final cannula position were fused with the planning data. The coordinates of the target point and the endpoint of the robot- or frame-guided probe were visually determined using the robotic software. The target point error (TPE) was calculated applying the Euclidian distance. The depth deviation along the trajectory and the lateral deviation were separately calculated. ResultsRobotics was significantly more accurate, with an arithmetic TPE mean of 0.53 mm (95% CI 0.41-0.55 mm) compared to 0.72 mm (95% CI 0.63-0.8 mm) in stereotaxy (p < 0.05). In robotics, the mean depth deviation along the trajectory was -0.22 mm (95% CI -0.25 to -0.14 mm). The mean lateral deviation was 0.43 mm (95% CI 0.32-0.49 mm). In frame-based stereotaxy, the mean depth deviation amounted to -0.20 mm (95% CI -0.26 to -0.14 mm), the mean lateral deviation to 0.65 mm (95% CI 0.55-0.74 mm). ConclusionBoth the robotic and frame-based approach proved accurate. The robotic procedure showed significantly higher accuracy. For both methods, procedural factors occurring during surgery might have a more relevant impact on overall accuracy.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Spyrantis, AndreaUNSPECIFIEDorcid.org/0000-0002-7635-6295UNSPECIFIED
Woebbecke, TirzaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ruess, DanielUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Constantinescu, AnneUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gierich, AndreasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Luyken, KlausUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Visser-Vandewalle, VeerleUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Herrmann, EvaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gessler, FlorianUNSPECIFIEDorcid.org/0000-0002-3471-0575UNSPECIFIED
Czabanka, MarcusUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Treuer, HaraldUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ruge, MaximilianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Freiman, Thomas M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-676595
DOI: 10.3389/fnbot.2022.762317
Journal or Publication Title: Front. Neurorobotics
Volume: 16
Date: 2022
Publisher: FRONTIERS MEDIA SA
Place of Publication: LAUSANNE
ISSN: 1662-5218
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
COMPUTED-TOMOGRAPHYMultiple languages
Computer Science, Artificial Intelligence; Robotics; NeurosciencesMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/67659

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item