Wang, Ze, Liu, Siyao, Han, Chengyuan, Huang, Shupei, Gao, Xiangyun, Tang, Renwu and Di, Zengru (2022). Motif Transition Intensity: A Novel Network-Based Early Warning Indicator for Financial Crises. Front. Physics, 9. LAUSANNE: FRONTIERS MEDIA SA. ISSN 2296-424X
Full text not available from this repository.Abstract
Financial crisis, rooted in a lack of system resilience and robustness, is a particular type of critical transition that may cause grievous economic and social losses and should be warned against as early as possible. Regarding the financial system as a time-varying network, researchers have identified early warning signals from the changing dynamics of network motifs. In addition, network motifs have many different morphologies that unveil high-order correlation patterns of a financial system, whose synchronous change represents the dramatic shift in the financial system's functionality and may indicate a financial crisis; however, it is less studied. This paper proposes motif transition intensity as a novel method that quantifies the synchronous change of network motifs in detail. Applying this method to stock networks, we developed three early warning indicators. Empirically, we conducted a horse race to predict ten global crises during 1991-2020. The results show evidence that the proposed indicators are more efficient than the VIX and the other 39 network-based indicators. In a detailed analysis, the proposed indicators send sensitive and comprehensible warning signals, especially for the U.S. subprime mortgage crisis and the European sovereign debt crisis. Furthermore, the proposed method provides a new perspective to detect critical signals and may be extended to predict other crisis events in natural and social systems.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-682506 | ||||||||||||||||||||||||||||||||
DOI: | 10.3389/fphy.2021.800860 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Front. Physics | ||||||||||||||||||||||||||||||||
Volume: | 9 | ||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||
Publisher: | FRONTIERS MEDIA SA | ||||||||||||||||||||||||||||||||
Place of Publication: | LAUSANNE | ||||||||||||||||||||||||||||||||
ISSN: | 2296-424X | ||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/68250 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |