Ebler, Jana, Ebert, Peter ORCID: 0000-0001-7441-532X, Clarke, Wayne E., Rausch, Tobias ORCID: 0000-0001-5773-5620, Audano, Peter A., Houwaart, Torsten ORCID: 0000-0002-4525-7593, Mao, Yafei ORCID: 0000-0002-9648-4278, Korbel, Jan O., Eichler, Evan E., Zody, Michael C., Dilthey, Alexander T. and Marschall, Tobias (2022). Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. Nature Genet., 54 (4). S. 518 - 541. BERLIN: NATURE PORTFOLIO. ISSN 1546-1718
Full text not available from this repository.Abstract
PanGenie is an alignment-free, k-mer-based tool that utilizes a haplotype-resolved pangenome reference to genotype a wide range of variants. Typical genotyping workflows map reads to a reference genome before identifying genetic variants. Generating such alignments introduces reference biases and comes with substantial computational burden. Furthermore, short-read lengths limit the ability to characterize repetitive genomic regions, which are particularly challenging for fast k-mer-based genotypers. In the present study, we propose a new algorithm, PanGenie, that leverages a haplotype-resolved pangenome reference together with k-mer counts from short-read sequencing data to genotype a wide spectrum of genetic variation-a process we refer to as genome inference. Compared with mapping-based approaches, PanGenie is more than 4 times faster at 30-fold coverage and achieves better genotype concordances for almost all variant types and coverages tested. Improvements are especially pronounced for large insertions (>= 50 bp) and variants in repetitive regions, enabling the inclusion of these classes of variants in genome-wide association studies. PanGenie efficiently leverages the increasing amount of haplotype-resolved assemblies to unravel the functional impact of previously inaccessible variants while being faster compared with alignment-based workflows.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-685046 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1038/s41588-022-01043-w | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Nature Genet. | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume: | 54 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Number: | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Page Range: | S. 518 - 541 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Publisher: | NATURE PORTFOLIO | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Place of Publication: | BERLIN | ||||||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1546-1718 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/68504 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |