Szecsi, Dorottya ORCID: 0000-0001-6473-7085, Agrawal, Poojan, Wuensch, Richard and Langer, Norbert (2022). Bonn Optimized Stellar Tracks (BoOST) Simulated populations of massive and very massive stars for astrophysical applications. Astron. Astrophys., 658. LES ULIS CEDEX A: EDP SCIENCES S A. ISSN 1432-0746
Full text not available from this repository.Abstract
Massive and very massive stars can play important roles in stellar populations by ejecting strong stellar winds and exploding in energetic phenomena. It is therefore imperative that their behavior be properly accounted for in synthetic model populations. We present nine grids of stellar evolutionary model sequences, together with finely resolved interpolated sequences and synthetic populations, of stars with 9-500 M-circle dot and with metallicities ranging from Galactic metallicity down to 1/250Z(circle dot). The stellar models were computed with the Bonn evolutionary code with consistent physical ingredients, and covering core hydrogen- and core helium-burning phases. The interpolation and population synthesis were performed with our newly developed routine SYNSTARS. Eight of the grids represent slowly rotating massive stars with a normal or classical evolutionary path, while one grid represents fast-rotating, chemically homogeneously evolving models. The grids contain data on stellar wind properties such as estimated wind velocity and kinetic energy of the wind, as well as common stellar parameters such as mass, radius, surface temperature, luminosity, mass-loss rate, and surface abundances of 34 isotopes. We also provide estimates of the helium and carbon-oxygen core mass for calculating the mass of stellar remnants. The Bonn Optimized Stellar Tracks (BoOST) project is published as simple tables that include stellar models, interpolated tracks, and synthetic populations. Covering the broadest mass and metallicity range of any published massive star evolutionary model sets to date, BoOST is ideal for further scientific applications such as star formation studies in both low- and high-redshift galaxies.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-687483 | ||||||||||||||||||||
DOI: | 10.1051/0004-6361/202141536 | ||||||||||||||||||||
Journal or Publication Title: | Astron. Astrophys. | ||||||||||||||||||||
Volume: | 658 | ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Publisher: | EDP SCIENCES S A | ||||||||||||||||||||
Place of Publication: | LES ULIS CEDEX A | ||||||||||||||||||||
ISSN: | 1432-0746 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/68748 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |