Baez-Nieto, David ORCID: 0000-0002-2238-8486, Allen, Andrew ORCID: 0000-0002-7232-2143, Akers-Campbell, Seth ORCID: 0000-0002-3214-5883, Yang, Lingling, Budnik, Nikita, Pupo, Amaury, Shin, Young-Cheul, Genovese, Giulio, Liao, Maofu, Perez-Palma, Eduardo, Heyne, Henrike ORCID: 0000-0001-9893-3850, Lal, Dennis, Lipscombe, Diane and Pan, Jen Q. (2022). Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain, 145 (5). S. 1839 - 1854. OXFORD: OXFORD UNIV PRESS. ISSN 1460-2156

Full text not available from this repository.

Abstract

CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes Ca(V)3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced Ca(V)3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded Ca(V)3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. Ca(V)3.3 variants associated with altered voltage dependence of the Ca(V)3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced Ca(V)3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of Ca(V)3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare Ca(V)3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of Ca(V)3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders. In a functional analysis of coding variants in CACNA1I, Baez-Nieto et al. show that rare variants derived from patients with schizophrenia mainly change how the Ca(V)3.3 channel is activated by voltage, whereas rare variants from control subjects are typically associated with reduced Ca(V)3.3 protein expression.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Baez-Nieto, DavidUNSPECIFIEDorcid.org/0000-0002-2238-8486UNSPECIFIED
Allen, AndrewUNSPECIFIEDorcid.org/0000-0002-7232-2143UNSPECIFIED
Akers-Campbell, SethUNSPECIFIEDorcid.org/0000-0002-3214-5883UNSPECIFIED
Yang, LinglingUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Budnik, NikitaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pupo, AmauryUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Shin, Young-CheulUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Genovese, GiulioUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Liao, MaofuUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Perez-Palma, EduardoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Heyne, HenrikeUNSPECIFIEDorcid.org/0000-0001-9893-3850UNSPECIFIED
Lal, DennisUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lipscombe, DianeUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pan, Jen Q.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-691173
DOI: 10.1093/brain/awab443
Journal or Publication Title: Brain
Volume: 145
Number: 5
Page Range: S. 1839 - 1854
Date: 2022
Publisher: OXFORD UNIV PRESS
Place of Publication: OXFORD
ISSN: 1460-2156
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
DE-NOVO MUTATIONS; CALCIUM-CHANNEL; PORE TURRET; THALAMIC NEURONS; ION CHANNELS; CA(V)3.3; PROTEIN; ACTIVATION; CONDUCTANCE; INDIVIDUALSMultiple languages
Clinical Neurology; NeurosciencesMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/69117

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item