Syed, J., Soler, J. D., Beuther, H., Wang, Y., Suri, S., Henshaw, J. D., Riener, M., Bialy, S., Rezaei Kh, S., Stil, J. M., Goldsmith, P. F., Rugel, M. R., Glover, S. C. O., Klessen, R. S., Kerp, J., Urquhart, J. S., Ott, J., Roy, N., Schneider, N., Smith, R. J., Longmore, S. N. and Linz, H. (2022). The Maggie filament: Physical properties of a giant atomic cloud. Astron. Astrophys., 657. LES ULIS CEDEX A: EDP SCIENCES S A. ISSN 1432-0746

Full text not available from this repository.

Abstract

Context. The atomic phase of the interstellar medium plays a key role in the formation process of molecular clouds. Due to the line-of-sight confusion in the Galactic plane that is associated with its ubiquity, atomic hydrogen emission has been challenging to study. Aims. We investigate the physical properties of the Maggie filament, a large-scale filament identified in H I emission at line-of-sight velocities, upsilon(LSR) similar to -54 km s(-1). Methods. Employing the high-angular resolution data from The H I/OH Recombination line survey of the inner Milky Way (THOR), we have been able to study H I emission features at negative upsilon(LSR) velocities without any line-of-sight confusion due to the kinematic distance ambiguity in the first Galactic quadrant. In order to investigate the kinematic structure, we decomposed the emission spectra using the automated Gaussian fitting algorithm GAUSSPY+. Results. We identify one of the largest, coherent, mostly atomic H I filaments in the Milky Way. The giant atomic filament Maggie, with a total length of 1.2 +/- 0.1 kpc, is not detected in most other tracers, and it does not show signs of active star formation. At a kinematic distance of 17 kpc, Maggie is situated below (by approximate to 500 pc), but parallel to, the Galactic H I disk and is trailing the predicted location of the Outer Arm by 5-10 km s(-1) in longitude-velocity space. The centroid velocity exhibits a smooth gradient of less than +/- 3 km s(-1) (10 pc)(-1) and a coherent structure to within +/- 6 km s(-1). The line widths of similar to 10 km s(-1) along the spine of the filament are dominated by nonthermal effects. After correcting for optical depth effects, the mass of Maggie's dense spine is estimated to be 7.2(-1.9)(+2.5) x 10(5) M-circle dot. The mean number density of the filament is similar to 4 cm(-3), which is best explained by the filament being a mix of cold and warm neutral gas. In contrast to molecular filaments, the turbulent Mach number and velocity structure function suggest that Maggie is driven by transonic to moderately supersonic velocities that are likely associated with the Galactic potential rather than being subject to the effects of self-gravity or stellar feedback. The probability density function of the column density displays a log-normal shape around a mean of < N-HI > = 4.8 x 10(20) cm(-2), thus reflecting the absence of dominating effects of gravitational contraction. Conclusions. While Maggie's origin remains unclear, we hypothesize that Maggie could be the first in a class of atomic clouds that are the precursors of giant molecular filaments.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Syed, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Soler, J. D.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Beuther, H.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wang, Y.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Suri, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Henshaw, J. D.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Riener, M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Bialy, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Rezaei Kh, S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Stil, J. M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Goldsmith, P. F.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Rugel, M. R.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Glover, S. C. O.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Klessen, R. S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kerp, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Urquhart, J. S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ott, J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Roy, N.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schneider, N.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Smith, R. J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Longmore, S. N.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Linz, H.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-695559
DOI: 10.1051/0004-6361/202141265
Journal or Publication Title: Astron. Astrophys.
Volume: 657
Date: 2022
Publisher: EDP SCIENCES S A
Place of Publication: LES ULIS CEDEX A
ISSN: 1432-0746
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
PROBABILITY-DISTRIBUTION FUNCTION; HI/OH/RECOMBINATION LINE SURVEY; PERSEUS MOLECULAR CLOUD; WARM NEUTRAL MEDIUM; MILKY-WAY II.; DIFFUSE H I; INTERSTELLAR-MEDIUM; COLUMN DENSITY; STAR-FORMATION; GAUSSIAN DECOMPOSITIONMultiple languages
Astronomy & AstrophysicsMultiple languages
URI: http://kups.ub.uni-koeln.de/id/eprint/69555

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item