Brunklaus, Andreas ORCID: 0000-0002-7728-6903, Perez-Palma, Eduardo, Ghanty, Ismael, Xinge, Ji, Brilstra, Eva, Ceulemans, Berten ORCID: 0000-0001-7818-0679, Chemaly, Nicole, de Lange, Iris, Depienne, Christel ORCID: 0000-0002-7212-9554, Guerrini, Renzo ORCID: 0000-0002-7272-7079, Mei, Davide, Moller, Rikke S. ORCID: 0000-0002-9664-1448, Nabbout, Rima, Regan, Brigid M., Schneider, Amy L., Scheffer, Ingrid E., Schoonjans, An-Sofie, Symonds, Joseph D., Weckhuysen, Sarah ORCID: 0000-0003-2878-1147, Kattan, Michael W., Zuberi, Sameer M. and Lal, Dennis (2022). Development and Validation of a Prediction Model for Early Diagnosis of SCN1A-Related Epilepsies. Neurology, 98 (11). S. E1163 - 12. PHILADELPHIA: LIPPINCOTT WILLIAMS & WILKINS. ISSN 1526-632X
Full text not available from this repository.Abstract
Background and Objectives Pathogenic variants in the neuronal sodium channel alpha 1 subunit gene (SCN1A) are the most frequent monogenic cause of epilepsy. Phenotypes comprise a wide clinical spectrum, including severe childhood epilepsy; Dravet syndrome, characterized by drug-resistant seizures, intellectual disability, and high mortality; and the milder genetic epilepsy with febrile seizures plus (GEFS+), characterized by normal cognition. Early recognition of a child's risk for developing Dravet syndrome vs GEFS+ is key for implementing disease-modifying therapies when available before cognitive impairment emerges. Our objective was to develop and validate a prediction model using clinical and genetic biomarkers for early diagnosis of SCN1A-related epilepsies. Methods We performed a retrospective multicenter cohort study comprising data from patients with SCN1A-positive Dravet syndrome and patients with GEFS+ consecutively referred for genetic testing (March 2001-June 2020) including age at seizure onset and a newly developed SCN1A genetic score. A training cohort was used to develop multiple prediction models that were validated using 2 independent blinded cohorts. Primary outcome was the discriminative accuracy of the model predicting Dravet syndrome vs other GEFS+ phenotypes. Results A total of 1,018 participants were included. The frequency of Dravet syndrome was 616/743 (83%) in the training cohort, 147/203 (72%) in validation cohort 1, and 60/72 (83%) in validation cohort 2. A high SCN1A genetic score (133.4 [SD 78.5] vs 52.0 [SD 57.5]; p < 0.001) and young age at onset (6.0 [SD 3.0] vs 14.8 [SD 11.8] months; p < 0.001) were each associated with Dravet syndrome vs GEFS+. A combined SCN1A genetic score and seizure onset model separated Dravet syndrome from GEFS+ more effectively (area under the curve [AUC] 0.89 [95% CI 0.86-0.92]) and outperformed all other models (AUC 0.79-0.85; p < 0.001). Model performance was replicated in both validation cohorts 1 (AUC 0.94 [95% CI 0.91-0.97]) and 2 (AUC 0.92 [95% CI 0.82-1.00]). Discussion The prediction model allows objective estimation at disease onset whether a child will develop Dravet syndrome vs GEFS+, assisting clinicians with prognostic counseling and decisions on early institution of precision therapies (http://scn1a-prediction-modelbroadinstitute.org/). Classification of Evidence This study provides Class II evidence that a combined SCN1A genetic score and seizure onset model distinguishes Dravet syndrome from other GEFS+ phenotypes.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-696377 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1212/WNL.0000000000200028 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Neurology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume: | 98 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number: | 11 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Page Range: | S. E1163 - 12 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Publisher: | LIPPINCOTT WILLIAMS & WILKINS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Place of Publication: | PHILADELPHIA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1526-632X | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/69637 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |