Dratsch, Thomas (2023). Praktische Anwendung von Deep Learning: Klassifizierung der häufigsten Röntgenbilder in einem PACS mit Hilfe eines neuronalen Netzwerkes. PhD thesis, Universität zu Köln.
PDF
Dratsch_Promotion_Finale_Version.pdf - Published Version Bereitstellung unter der CC-Lizenz: Creative Commons Attribution Non-commercial. Download (2MB) |
Abstract
Das Ziel dieser Arbeit war es, ein neuronales Netzwerk zur Klassifikation der häufigsten Kategorien von konventionellen Röntgenbildern (z.B.: Thorax ap, Abdomen in Seitenlage) zu entwickeln und anhand von internen und externen Daten zu validieren. Ein solches Netzwerk kann dabei helfen verschiedene radiologische Arbeitsabläufe zu verbessern. Hierzu wurden alle an unserem Institut erstellten Röntgenbilder aus dem Jahr 2017 (n = 71.274) aus dem PACS (Picture Archiving and Communication System) aufgerufen. Die 30 größten Kategorien (n = 58.291, 81,7% aller im Jahr 2017 erstellten Röntgenbilder) wurden dazu verwendet ein neuronales Netzwerk (MobileNet v1.0) mittels Transfer Learning zu trainieren und zu validieren. Die Kategorien der Röntgenbilder wurden anhand der DICOM-Metadaten extrahiert und an die Kategorien des WHO Manuals of Diagnostic Imaging angepasst. Zur unabhängigen, externen Validierung der Ergebnisse dienten Bilder von externen Krankenhäusern aus unserem PACS (n = 5324). In der internen Validierung betrug die Genauigkeit des Modells 90.3% (95%CI: 89.2–91.3%), In der externen Validierung betrug die Genauigkeit des Modells 94.0% (95%CI: 93.3–94.6%). Mit Hilfe von Daten nur einer Institution waren wir in der Lage ein neuronales Netzwerk zur Klassifikation der häufigsten Kategorien von Röntgenbildern zu trainieren. Das Netzwerk zeigte eine gute Generalisierbarkeit in den externen Daten und kann dazu verwendet werden Bilder deren Metadaten fehlen oder fehlerhaft sind in einem PACS zu organisieren bzw. eine Vorauswahl an Röntgenbildern zu treffen, so dass diese an spezialisierte neuronale Netzwerke zur Erkennung von Erkrankungen weitergeleitet werden können. Das neuronale Netzwerk kann auch dabei helfen andere radiologische Arbeitsabläufe zu optimieren (zum Beispiel: automatisierte Aufhängung von Röntgenbildern; Überprüfung, ob angefordertes und durchgeführtes Bild übereinstimmen). Das finale neuronale Netzwerk steht öffentlich zur Evaluation und Erweiterung zur Verfügung.
Item Type: | Thesis (PhD thesis) | ||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-718479 | ||||||||
Date: | 23 October 2023 | ||||||||
Language: | German | ||||||||
Faculty: | Faculty of Medicine | ||||||||
Divisions: | Faculty of Medicine > Radiologische Diagnostik > Institut und Poliklinik für Radiologische Diagnostik | ||||||||
Subjects: | Medical sciences Medicine | ||||||||
Uncontrolled Keywords: |
|
||||||||
Date of oral exam: | 23 October 2023 | ||||||||
Referee: |
|
||||||||
Refereed: | Yes | ||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/71847 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |