Behfar, Qumars ORCID: 0000-0001-5217-924X
(2025).
Cognitive Stimulation Therapy in mild to moderate Alzheimer’s Disease: an MRI study.
PhD thesis, Universität zu Köln.
![]() |
PDF (Dissertation)
Monogaphie_CogStimv7_OEEO_QB_Final_Color.pdf Download (3MB) |
Abstract
This research endeavor aimed at understanding the mechanisms behind the effectiveness of Cognitive Stimulation Therapy (CST) in addressing cognitive challenges in Alzheimer's disease (AD) patients. The study, conducted at the Neurology Department of Cologne University Hospital, involved mild to moderate AD patients undergoing CST. Utilizing MRI, our goal was to uncover neural transformations underlying cognitive benefits observed in CST participants, thus advancing understanding of CST's therapeutic potential. Brain plasticity refers to the brain's ability to adapt and reorganize itself in response to experiences and injuries. This process allows for the formation of new neural connections, supporting the development of new skills and improving cognitive function. CST is designed to enhance brain plasticity and promote compensatory mechanisms in individuals with cognitive decline. Building on knowledge of neuroplasticity's role in CST and its manifestation as compensatory effects in brain imaging, our study established a framework to detect resting-state compensatory effects in healthy aging and Mild Cognitive Impairment (MCI). Using graph theory analysis of resting-state functional MRI data and volumetric analyses of structural MRI, we identified compensatory regions in the brain associated with cognitive performance. Our analysis revealed increased connectivity in certain brain regions despite atrophy, suggesting a compensatory mechanism to counter cognitive decline. These findings align with existing models of compensation in aging and neurodegeneration. Specifically, we identified regions such as the prefrontal cortex and parietal lobe showing successful compensation in MCI patients, with similarity to patterns observed in task-based compensational effect, suggesting that these regions may serve as targets for non-invasive stimulation techniques to enhance neuronal performance. With evidence of brain plasticity-driven compensation in healthy aging and MCI, our study then focused on CST's capacity to mitigate cognitive decline in mild to moderate AD, using an eight-week CST program on patients with mild to moderate AD compared to a control group with no intervention. We evaluated changes in cognition, quality of life (QoL), and brain connectivity immediately after the intervention period and at a three-month follow-up. CST was found to significantly improve cognitive function, QoL, and neuropsychiatric measures in the intervention group compared to the control group. Furthermore, our study examined the role of cognitive reserve in predicting response to CST, finding a significant correlation between improvement in cognition and years of education as a proxy measure for cognitive reserve. However, baseline total brain volume did not correlate with CST outcomes, suggesting that CST efficacy is not dependent on brain reserve in patients with mild to moderate AD. Analysis of brain connectivity using functional MRI revealed enhanced connectivity between the hippocampus and memory-related regions, suggesting neuroplastic changes induced by CST. Additionally, increased connectivity in the parietal lobes is observed, consistent with compensatory mechanisms in healthy aging and prodromal AD. Our results are suggestive of CST-induced neuronal activity, promoting compensatory neuroplasticity, particularly in regions associated with memory and self-representation. Autobiographical recall and narrative tasks incorporated into the CST program may contribute to memory enhancement and restoration of self-continuity. Finally, we discussed the potential of Maintenance Cognitive Stimulation Therapy (MCST) as a longer-term intervention to maintain cognitive gains and prevent further decline in individuals with dementia. Overall, our findings highlight the effectiveness of CST in improving cognition, QoL, and brain connectivity in patients with mild to moderate AD, and provide further evidence for the broad recommendation of CST as a cost-effective non-pharmacological treatment approach for AD and emphasizes the need for its widespread accessibility in various settings, while underscoring the importance of further research to refine intervention strategies and understand underlying mechanisms.
Item Type: | Thesis (PhD thesis) | ||||||||
Translated title: |
|
||||||||
Translated abstract: |
|
||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-752175 | ||||||||
Date: | 2025 | ||||||||
Publisher: | University of Cologne | ||||||||
Place of Publication: | Cologne, Germany | ||||||||
Language: | English | ||||||||
Faculty: | Faculty of Medicine | ||||||||
Divisions: | Außeruniversitäre Forschungseinrichtungen > Forschungszentrum Jülich | ||||||||
Subjects: | Data processing Computer science Psychology Natural sciences and mathematics Medical sciences Medicine |
||||||||
Uncontrolled Keywords: |
|
||||||||
Date of oral exam: | 27 January 2025 | ||||||||
Referee: |
|
||||||||
References: | • Abraha, I., Rimland, J.M., Trotta, F.M., Dell’Aquila, G., Cruz-Jentoft, A., Petrovic, M., Gudmundsson, A., Soiza, R., O’Mahony, D., Guaita, A., Cherubini, A., 2017. Systematic review of systematic reviews of non-pharmacological interventions to treat behavioural disturbances in older patients with dementia. The SENATOR-OnTop series. BMJ Open 7, e012759. https://doi.org/10.1136/BMJOPEN-2016-012759 • Adlard, P.A., Cotman, C.W., 2004. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience 124, 985–92. https://doi.org/10.1016/j.neuroscience.2003.12.039 • Aguirre, E., 2012. Making a Difference 2: an evidence based group program to offer maintenance Cognitive Stimulation Therapy (CST) to people with dementia. Hawker Publ. UK. • Aguirre, E., Woods, R.T., Spector, A., Orrell, M., 2013. Cognitive stimulation for dementia: A systematic review of the evidence of effectiveness from randomised controlled trials. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2012.07.001 • Alves, J., Magalhães, R., Thomas, R.E., Gonçalves, Ó.F., Petrosyan, A., Sampaio, A., 2013. Is there evidence for cognitive intervention in alzheimer disease? A systematic review of efficacy, feasibility, and cost-effectiveness. Alzheimer Dis. Assoc. Disord. https://doi.org/10.1097/WAD.0b013e31827bda55 • Ames, D., Burns, A.S., O’Brien, J., 2010. Dementia. Hodder Arnold. • Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry--the methods. Neuroimage 11, 805–21. https://doi.org/10.1006/nimg.2000.0582 • Bäckman, L., 1996. Utilizing compensatory task conditions for episodic memory in Alzheimer’s disease. Acta Neurol. Scand. Suppl. 165, 109–13. https://doi.org/10.1111/j.1600-0404.1996.tb05880.x • Baglio, F., Griffanti, L., Saibene, F.L., Ricci, C., Alberoni, M., Critelli, R., Villanelli, F., Fioravanti, R., Mantovani, F., D’amico, A., Cabinio, M., Preti, M.G., Nemni, R., Farina, E., 2015. Multistimulation group therapy in Alzheimer’s disease promotes changes in brain functioning. Neurorehabil. Neural Repair 29, 13–24. https://doi.org/10.1177/1545968314532833 • Bakker, A., Krauss, G.L., Albert, M.S., Speck, C.L., Jones, L.R., Stark, C.E., Yassa, M.A., Bassett, S.S., Shelton, A.L., Gallagher, M., 2012. Reduction of Hippocampal Hyperactivity Improves Cognition in Amnestic Mild Cognitive Impairment. Neuron 74, 467–474. https://doi.org/10.1016/j.neuron.2012.03.023 • Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E., 2011. Alzheimer’s disease. Lancet (London, England) 377, 1019–31. https://doi.org/10.1016/S0140-6736(10)61349-9 • Ballard, C., Margallo-Lana, M., Juszczak, E., Douglas, S., Swann, A., Thomas, A., O’Brien, J., Everratt, A., Sadler, S., Maddison, C., Lee, L., Bannister, C., Elvish, R., Jacoby, R., 2005. Quetiapine and rivastigmine and cognitive decline in Alzheimer’s disease: Randomised double blind placebo controlled trial. Br. Med. J. 330, 874–877. https://doi.org/10.1136/bmj.38369.459988.8F • Baller G, Kalbe E, Kaesberg S, K.J., 2009. NEUROvitalis. Ein Neuropsychologisches Gruppenprogramm zur Förderung der Geistigen Leistungsfähigkeit. ProLog, Köln. • Balsters, J.H., Laird, A.R., Fox, P.T., Eickhoff, S.B., 2014. Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling. Hum. Brain Mapp. 35, 3152–69. https://doi.org/10.1002/hbm.22392 • Bamidis, P.D., Vivas, A.B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., Siountas, A., Papageorgiou, S.G., 2014. A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 44, 206–220. https://doi.org/10.1016/J.NEUBIOREV.2014.03.019 • Bassett, D.S., Bullmore, E.T., Meyer-Lindenberg, A., Apud, J.A., Weinberger, D.R., Coppola, R., 2009. Cognitive fitness of cost-efficient brain functional networks, PNAS July. • Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T., 2011. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U. S. A. 108, 7641–6. https://doi.org/10.1073/pnas.1018985108 • Behfar, Q., Andrade, V., Martin, R.C., Adami, P.V.M., Dalmasso, C., Kleineidam, L., Parveen, K., Tripathi, K.P., Boada, M., Rojas, I. de, García-González, P., Marquié, M., Puerta, R., Brosseron, F., Duzel, E., Heneka, M.T., Jessen, F., Ruiz, A., Ramirez, A., 2022. Methylation age and inflammation in prodromal Alzheimer’s disease. • Behfar, Q., Behfar, S.K., von Reutern, B., Richter, N., Dronse, J., Fassbender, R., Fink, G.R., Onur, O.A., 2020. Graph Theory Analysis Reveals Resting-State Compensatory Mechanisms in Healthy Aging and Prodromal Alzheimer’s Disease. Front. Aging Neurosci. 12, 1–13. https://doi.org/10.3389/fnagi.2020.576627 • Behfar, Q., Richter, N., Kural, M., Clemens, A., Behfar, S.K., Folkerts, A.-K., Fassbender, R., Kalbe, E., Fink, G.R., Onur, O.A., 2023. Improved connectivity and cognition due to cognitive stimulation in Alzheimer’s disease. Front. Aging Neurosci. 15, 1140975. https://doi.org/10.3389/FNAGI.2023.1140975 • Berg-Weger, M., Stewart, D.B., 2017. Non-Pharmacologic Interventions for Persons with Dementia. Mo. Med. 114, 116. • Bishop, S.R., Lau, M., Shapiro, S., Carlson, L., Anderson, N.D., Carmody, J., Segal, Z. V., Abbey, S., Speca, M., Velting, D., Devins, G., 2004. Mindfulness: A proposed operational definition. Clin. Psychol. Sci. Pract. 11, 230–241. https://doi.org/10.1093/clipsy.bph077 • Blay, S.L., Peluso, É.T.P., 2010. Public stigma: the community’s tolerance of Alzheimer disease. Am. J. Geriatr. Psychiatry 18, 163–171. https://doi.org/10.1097/JGP.0B013E3181BEA900 • Boot, W.R., Simons, D.J., Stothart, C., Stutts, C., 2013. The Pervasive Problem With Placebos in Psychology: Why Active Control Groups Are Not Sufficient to Rule Out Placebo Effects. Perspect. Psychol. Sci. 8, 445–54. https://doi.org/10.1177/1745691613491271 • Boyle, P.A., Wilson, R.S., Yu, L., Barr, A.M., Honer, W.G., Schneider, J.A., Bennett, D.A., 2013. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann. Neurol. 74, 478–89. https://doi.org/10.1002/ana.23964 • Breuil, V., De Rotrou, J., Forette, F., Tortrat, D., Ganansia-Ganem, A., Frambourt, A., Moulin, F., Boller, F., 1994. Cognitive stimulation of patients with dementia: Preliminary results. Int. J. Geriatr. Psychiatry 9, 211–217. https://doi.org/10.1002/gps.930090306 • Brodaty, H., Arasaratnam, C., 2012. Meta-analysis of nonpharmacological interventions for neuropsychiatric symptoms of dementia. Am. J. Psychiatry 169, 946–53. https://doi.org/10.1176/appi.ajp.2012.11101529 • Brodaty, H., Connors, M.H., Xu, J., Woodward, M., Ames, D., PRIME study group, 2015. The course of neuropsychiatric symptoms in dementia: a 3-year longitudinal study. J. Am. Med. Dir. Assoc. 16, 380–7. https://doi.org/10.1016/j.jamda.2014.12.018 • Buckner, R.L., Snyder, A.Z., Sanders, A.L., Raichle, M.E., Morris, J.C., 2000. Functional brain imaging of young, nondemented, and demented older adults. J. Cogn. Neurosci. 12, 24–34. https://doi.org/10.1162/089892900564046 • Budd Haeberlein, S., Aisen, P.S., Barkhof, F., Chalkias, S., Chen, T., Cohen, S., Dent, G., Hansson, O., Harrison, K., von Hehn, C., Iwatsubo, T., Mallinckrodt, C., Mummery, C.J., Muralidharan, K.K., Nestorov, I., Nisenbaum, L., Rajagovindan, R., Skordos, L., Tian, Y., van Dyck, C.H., Vellas, B., Wu, S., Zhu, Y., Sandrock, A., 2022. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 9, 197–210. https://doi.org/10.14283/jpad.2022.30 • Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198. https://doi.org/10.1038/nrn2575 • Buschert, V., Bokde, A.L.W., Hampel, H., 2010. Cognitive intervention in Alzheimer disease. Nat. Rev. Neurol. https://doi.org/10.1038/nrneurol.2010.113 • Cabeza, R., 2002. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol. Aging 17, 85–100. https://doi.org/10.1037/0882-7974.17.1.85 • Cabeza, R., Albert, M., Belleville, S., Craik, F.I.M., Duarte, A., Grady, C.L., Lindenberger, U., Nyberg, L., Park, D.C., Reuter-Lorenz, P.A., Rugg, M.D., Steffener, J., Rajah, M.N., 2018. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19, 701–710. https://doi.org/10.1038/s41583-018-0068-2 • Cabeza, R., Dennis, N. a, 2012. Frontal lobes and aging. Princ. Front. Lobe Funct. 628–652. https://doi.org/10.1093/acprof:oso/9780195134971.001.0001 • Campbell, N., Ayub, A., Boustani, M.A., Fox, C., Farlow, M., Maidment, I., Howard, R., 2008. Impact of cholinesterase inhibitors on behavioral and psychological symptoms of Alzheimer’s disease: A meta-analysis. Clin. Interv. Aging 3, 719–728. https://doi.org/10.2147/cia.s4250 • Carbone, E., Piras, F., Pastore, M., Borella, E., 2021. The Role of Individual Characteristics in Predicting Short- and Long-Term Cognitive and Psychological Benefits of Cognitive Stimulation Therapy for Mild-to-Moderate Dementia. Front. Aging Neurosci. 13, 811127. https://doi.org/10.3389/fnagi.2021.811127 • Cespón, J., Miniussi, C., Pellicciari, M.C., 2018. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Res. Rev. 43, 81–98. https://doi.org/10.1016/J.ARR.2018.03.001 • Chapman, Sandra B, Aslan, Sina, Spence, J.S., Hart, J.J., Bartz, E.K., Didehbani, N., Keebler, M.W., Gardner, C.M., Strain, J.F., Defina, L.F., Lu, H., Chapman, S B, Aslan, S, 2013. Neural Mechanisms of Brain Plasticity with Complex Cognitive Training in Healthy Seniors. https://doi.org/10.1093/cercor/bht234 • Chen, X., 2022. Effectiveness of cognitive stimulation therapy (CST) on cognition, quality of life and neuropsychiatric symptoms for patients living with dementia: A meta-analysis. Geriatr. Nurs. (Minneap). 47, 201–210. https://doi.org/10.1016/J.GERINURSE.2022.07.012 • Cieslik, E.C., Zilles, K., Caspers, S., Roski, C., Kellermann, T.S., Jakobs, O., Langner, R., Laird, A.R., Fox, P.T., Eickhoff, S.B., 2013. Is There “One” DLPFC in Cognitive Action Control? Evidence for Heterogeneity From Co-Activation-Based Parcellation. Cereb. Cortex 23, 2677–2689. https://doi.org/10.1093/cercor/bhs256 • Clare, L., Linden, D.E.J., Woods, R.T., Whitaker, R., Evans, S.J., Parkinson, C.H., van Paasschen, J., Nelis, S.M., Hoare, Z., Yuen, K.S.L., Rugg, M.D., 2010. Goal-oriented cognitive rehabilitation for people with early-stage Alzheimer disease: a single-blind randomized controlled trial of clinical efficacy. Am. J. Geriatr. Psychiatry 18, 928–39. https://doi.org/10.1097/JGP.0b013e3181d5792a • Clare, L., van Paasschen, J., Evans, S.J., Parkinson, C., Woods, R.T., Linden, D.E.J., 2009. Goal-oriented cognitive rehabilitation for an individual with Mild Cognitive Impairment: behavioural and neuroimaging outcomes. Neurocase 15, 318–31. https://doi.org/10.1080/13554790902783116 • Clos, M., Amunts, K., Laird, A.R., Fox, P.T., Eickhoff, S.B., Vogt, O., 2013. Tackling the multifunctional nature of Broca’s region meta-analytically: Co-activation-based parcellation of area 44 HHS Public Access. Neuroimage 83, 174–188. https://doi.org/10.1016/j.neuroimage.2013.06.041 • Colavitta, M.F., Grasso, L., Barrantes, F.J., 2023. Environmental Enrichment in Murine Models and Its Translation to Human Factors Improving Conditions in Alzheimer Disease. J. Prev. Alzheimer’s Dis. 10, 287–300. https://doi.org/10.14283/jpad.2023.5 • Conwell, K., von Reutern, B., Richter, N., Kukolja, J., Fink, G.R., Onur, O.A., 2018. Test-retest variability of resting-state networks in healthy aging and prodromal Alzheimer’s disease. NeuroImage Clin. 19, 948–962. https://doi.org/10.1016/j.nicl.2018.06.016 • Cotelli, M., Manenti, R., Cappa, S.F., Zanetti, O., Miniussi, C., 2008. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur. J. Neurol. 15, 1286–1292. https://doi.org/10.1111/j.1468-1331.2008.02202.x • Cummings, J.L., 1997. The Neuropsychiatric Inventory: Assessing psychopathology in dementia patients. Neurology 48, 10S-16S. https://doi.org/10.1212/wnl.48.5_suppl_6.10s • D’Amico, F., Rehill, A., Knapp, M., Aguirre, E., Donovan, H., Hoare, Z., Hoe, J., Russell, I., Spector, A., Streater, A., Whitaker, C., Woods, R.T., Orrell, M., 2015. Maintenance Cognitive Stimulation Therapy: An Economic Evaluation Within a Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 16, 63–70. https://doi.org/10.1016/J.JAMDA.2014.10.020 • Davidson, P.S.R., Anaki, D., Ciaramelli, E., Cohn, M., Kim, A.S.N., Murphy, K.J., Troyer, A.K., Moscovitch, M., Levine, B., 2008. Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia 46, 1743–55. https://doi.org/10.1016/j.neuropsychologia.2008.01.011 • Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., Cabeza, R., 2008. Qué PASA? the posterior-anterior shift in aging. Cereb. Cortex 18, 1201–1209. https://doi.org/10.1093/cercor/bhm155 • de Werd, M.M.E., Boelen, D., Rikkert, M.G.M.O., Kessels, R.P.C., 2013. Errorless learning of everyday tasks in people with dementia. Clin. Interv. Aging 8, 1177–90. https://doi.org/10.2147/CIA.S46809 • DeKosky, S.T., Ikonomovic, M.D., Styren, S.D., Beckett, L., Wisniewski, S., Bennett, D.A., Cochran, E.J., Kordower, J.H., Mufson, E.J., 2002. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol. 51, 145–155. https://doi.org/10.1002/ana.10069 • delEtoile, J., Adeli, H., 2017. Graph Theory and Brain Connectivity in Alzheimer’s Disease. Neuroscientist 23, 616–626. https://doi.org/10.1177/1073858417702621 • Dennis, M., Spiegler, B.J., Juranek, J.J., Bigler, E.D., Snead, O.C., Fletcher, J.M., 2013. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci. Biobehav. Rev. 37, 2760–73. https://doi.org/10.1016/j.neubiorev.2013.09.010 • Dickerson, B.C., Sperling, R.A., 2008. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: Insights from functional MRI studies. Neuropsychologia 46, 1624–1635. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2007.11.030 • Dimitriadis, S.I., Laskaris, N.A., Tsirka, V., Vourkas, M., Micheloyannis, S., Fotopoulos, S., 2010. Tracking brain dynamics via time-dependent network analysis. J. Neurosci. Methods 193, 145–155. https://doi.org/10.1016/J.JNEUMETH.2010.08.027 • Doblhammer, G., Fink, A., Zylla, S., Willekens, F., 2015. Compression or expansion of dementia in Germany? An observational study of short-term trends in incidence and death rates of dementia between 2006/07 and 2009/10 based on German health insurance data. Alzheimers. Res. Ther. 7, 66. https://doi.org/10.1186/s13195-015-0146-x • Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., DeKosky, S.T., Gauthier, S., Selkoe, D., Bateman, R., Cappa, S., Crutch, S., Engelborghs, S., Frisoni, G.B., Fox, N.C., Galasko, D., Habert, M.-O., Jicha, G.A., Nordberg, A., Pasquier, F., Rabinovici, G., Robert, P., Rowe, C., Salloway, S., Sarazin, M., Epelbaum, S., de Souza, L.C., Vellas, B., Visser, P.J., Schneider, L., Stern, Y., Scheltens, P., Cummings, J.L., 2014. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 13, 614–629. https://doi.org/10.1016/S1474-4422(14)70090-0 • Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H., Bertram, L., Blennow, K., Broich, K., Cavedo, E., Crutch, S., Dartigues, J.F., Duyckaerts, C., Epelbaum, S., Frisoni, G.B., Gauthier, S., Genthon, R., Gouw, A.A., Habert, M.O., Holtzman, D.M., Kivipelto, M., Lista, S., Molinuevo, J.L., O’Bryant, S.E., Rabinovici, G.D., Rowe, C., Salloway, S., Schneider, L.S., Sperling, R., Teichmann, M., Carrillo, M.C., Cummings, J., Jack, C.R., 2016. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. https://doi.org/10.1016/j.jalz.2016.02.002 • Dubois, J., Adolphs, R., 2016. Building a Science of Individual Differences from fMRI. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2016.03.014 • Duits, F.H., Prins, N.D., Lemstra, A.W., Pijnenburg, Y.A.L., Bouwman, F.H., Teunissen, C.E., Scheltens, P., van der Flier, W.M., 2015. Diagnostic impact of CSF biomarkers for Alzheimer’s disease in a tertiary memory clinic. Alzheimers. Dement. 11, 523–32. https://doi.org/10.1016/j.jalz.2014.05.1753 • Eaton WW, Smith C, Ybarra M, Muntaner C, T.A., 2004. Center for Epidemiologic Studies Depression Scale: Review and Revision (CESD and CESD-R). [WWW Document]. Maruish ME, Ed. use Psychol. Test. Treat. Plan. outcomes Assess. Instruments adults . URL https://psycnet.apa.org/record/2004-14941-011 (accessed 5.20.23). • Eickhoff, S.B., Bzdok, D., Laird, A.R., Roski, C., Caspers, S., Zilles, K., Fox, P.T., 2011. Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57, 938–949. https://doi.org/10.1016/j.neuroimage.2011.05.021 • Enciu, A.M., Nicolescu, M.I., Manole, C.G., Mureşanu, D.F., Popescu, L.M., Popescu, B.O., 2011. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 11, 75. https://doi.org/10.1186/1471-2377-11-75 • Enjolras, F., 2005. Incidence du pronostic sur la construction des modèles explicatifs de la maladie d’Alzheimer à l’île de la Réunion. Sci. Soc. Sante 23, 69–94. https://doi.org/10.3406/SOSAN.2005.1660 • EuroQol Research Foundation, 2019. EQ-5D-5L User Guide [WWW Document]. URL https://euroqol.org/publications/user-guides • Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A.R., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T., 2016. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb. Cortex 26, 3508–3526. https://doi.org/10.1093/cercor/bhw157 • Farfel, J.M., Nitrini, R., Suemoto, C.K., Grinberg, L.T., Ferretti, R.E.L., Leite, R.E.P., Tampellini, E., Lima, L., Farias, D.S., Neves, R.C., Rodriguez, R.D., Menezes, P.R., Fregni, F., Bennett, D.A., Pasqualucci, C.A., Jacob Filho, W., Brazilian Aging Brain Study Group, O. behalf of the B.A.B.S., 2013. Very low levels of education and cognitive reserve: a clinicopathologic study. Neurology 81, 650–7. https://doi.org/10.1212/WNL.0b013e3182a08f1b • Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, in: Behavior Research Methods. Psychonomic Society Inc., pp. 175–191. https://doi.org/10.3758/BF03193146 • Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. https://doi.org/10.1016/0022-3956(75)90026-6 • Fossey, J., Masson, S., Stafford, J., Lawrence, V., Corbett, A., Ballard, C., 2014. The disconnect between evidence and practice: a systematic review of person-centred interventions and training manuals for care home staff working with people with dementia. Int. J. Geriatr. Psychiatry 29, 797–807. https://doi.org/10.1002/gps.4072 • Fox, P.T., Lancaster, J.L., Laird, A.R., Eickhoff, S.B., 2014. Meta-Analysis in Human Neuroimaging: Computational Modeling of Large-Scale Databases. Annu. Rev. Neurosci. 37, 409–434. https://doi.org/10.1146/annurev-neuro-062012-170320 • Fuchs, E., Flügge, G., 2014. Adult neuroplasticity: more than 40 years of research. Neural Plast. 2014, 541870. https://doi.org/10.1155/2014/541870 • Gabrieli, J.D.E., Ghosh, S.S., Whitfield-Gabrieli, S., 2015. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron. https://doi.org/10.1016/j.neuron.2014.10.047 • Galasko, D., Bennett, D.A., Sano, M., Marson, D., Kaye, J., Edland, S.D., 2006. ADCS Prevention Instrument Project: Assessment of instrumental activities of daily living for community-dwelling elderly individuals in dementia prevention clinical trials. Alzheimer Dis. Assoc. Disord. 20. https://doi.org/10.1097/01.wad.0000213873.25053.2b • Ganguly, K., Poo, M.-M., 2013. Activity-dependent neural plasticity from bench to bedside. Neuron 80, 729–41. https://doi.org/10.1016/j.neuron.2013.10.028 • Goffman, E., Goffman, E., 1963. Stigma : Notes on the Management of Spoiled Identity. 180. • Gregory, S., Long, J.D., Klöppel, S., Razi, A., Scheller, E., Minkova, L., Papoutsi, M., Mills, J.A., Durr, A., Leavitt, B.R., Roos, R.A.C., Stout, J.C., Scahill, R.I., Langbehn, D.R., Tabrizi, S.J., Rees, G., 2017. Operationalizing compensation over time in neurodegenerative disease. Brain 140, 1158–1165. https://doi.org/10.1093/brain/awx022 • Hall, L., Orrell, M., Stott, J., Spector, A., 2013. Cognitive stimulation therapy (CST): neuropsychological mechanisms of change. Int. psychogeriatrics 25, 479–89. https://doi.org/10.1017/S1041610212001822 • Hansson, O., Seibyl, J., Stomrud, E., Zetterberg, H., Trojanowski, J.Q., Bittner, T., Lifke, V., Corradini, V., Eichenlaub, U., Batrla, R., Buck, K., Zink, K., Rabe, C., Blennow, K., Shaw, L.M., 2018. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimer’s Dement. 14, 1470–1481. https://doi.org/10.1016/J.JALZ.2018.01.010 • Heffernan, M., Andrews, G., Fiatarone Singh, M.A., Valenzuela, M., Anstey, K.J., Maeder, A.J., McNeil, J., Jorm, L., Lautenschlager, N.T., Sachdev, P.S., Ginige, J.A., Hobbs, M.J., Boulamatsis, C., Chau, T., Cobiac, L., Cox, K.L., Daniel, K., Flood, V.M., Guerrero, Y., Gunn, J., Jain, N., Kochan, N.A., Lampit, A., Mavros, Y., Meiklejohn, J., Noble, Y., O’Leary, F., Radd-Vagenas, S., Walton, C.C., Maintain Your Brain Collaborative Team, M.Y.B.C., Brodaty, H., 2019. Maintain Your Brain: Protocol of a 3-Year Randomized Controlled Trial of a Personalized Multi-Modal Digital Health Intervention to Prevent Cognitive Decline Among Community Dwelling 55 to 77 Year Olds. J. Alzheimers. Dis. 70, S221–S237. https://doi.org/10.3233/JAD-180572 • Hobart, J., Cano, S., Posner, H., Selnes, O., Stern, Y., Thomas, R., Zajicek, J., 2013. Putting the Alzheimer’s cognitive test to the test II: Rasch Measurement Theory. Alzheimer’s Dement. 9. https://doi.org/10.1016/j.jalz.2012.08.005 • Hosseini, S.M.H., Kramer, J.H., Kesler, S.R., 2014. Neural correlates of cognitive intervention in persons at risk of developing Alzheimerâ€TMs disease. Front. Aging Neurosci. 6, 231. https://doi.org/10.3389/fnagi.2014.00231 • Howard, M.W., Rizzuto, D.S., Caplan, J.B., Madsen, J.R., Lisman, J., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A., Kahana, M.J., 2003. Gamma Oscillations Correlate with Working Memory Load in Humans. Cereb. Cortex 13, 1369–1374. https://doi.org/10.1093/cercor/bhg084 • Huang, C.-M., Polk, T.A., Goh, J.O., Park, D.C., 2012. Both left and right posterior parietal activations contribute to compensatory processes in normal aging. Neuropsychologia 50, 55–66. https://doi.org/10.1016/j.neuropsychologia.2011.10.022 • Huang, S., Seidman, L.J., Rossi, S., Ahveninen, J., 2013. Distinct cortical networks activated by auditory attention and working memory load. Neuroimage 83, 1098–1108. https://doi.org/10.1016/j.neuroimage.2013.07.074 • Huntley, J.D., Gould, R.L., Liu, K., Smith, M., Howard, R.J., 2015. Do cognitive interventions improve general cognition in dementia? A meta-analysis and meta-regression. BMJ Open 5, e005247. https://doi.org/10.1136/BMJOPEN-2014-005247 • Hwang, W.C., 2009. The Formative Method for Adapting Psychotherapy (FMAP): A community-based developmental approach to culturally adapting therapy. Prof. Psychol. Res. Pr. 40, 369. https://doi.org/10.1037/A0016240 • Hwang, W.C., 2006. The psychotherapy adaptation and modification framework: application to Asian Americans. Am. Psychol. 61, 702–715. https://doi.org/10.1037/0003-066X.61.7.702 • Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., Mateos-Pérez, J.M., Evans, A.C., Weiner, M.W., Aisen, P., Petersen, R., Jack, C.R., Jagust, W., Trojanowki, J.Q., Toga, A.W., Beckett, L., Green, R.C., Saykin, A.J., Morris, J., Shaw, L.M., Khachaturian, Z., Sorensen, G., Kuller, L., Raichle, M., Paul, S., Davies, P., Fillit, H., Hefti, F., Holtzman, D., Mesulam, M.M., Potter, W., Snyder, P., Schwartz, A., Montine, T., Thomas, R.G., Donohue, M., Walter, S., Gessert, D., Sather, T., Jiminez, G., Harvey, D., Bernstein, M., Fox, N., Thompson, P., Schuff, N., Borowski, B., Gunter, J., Senjem, M., Vemuri, P., Jones, D., Kantarci, K., Ward, C., Koeppe, R.A., Foster, N., Reiman, E.M., Chen, K., Mathis, C., Landau, S., Cairns, N.J., Householder, E., Taylor-Reinwald, L., Lee, V., Korecka, M., Figurski, M., Crawford, K., Neu, S., Foroud, T.M., Potkin, S., Shen, L., Faber, K., Kim, S., Nho, K., Thal, L., Buckholtz, N., Albert, Marylyn, Frank, R., Hsiao, J., Kaye, J., Quinn, J., Lind, B., Carter, R., Dolen, S., Schneider, L.S., Pawluczyk, S., Beccera, M., Teodoro, L., Spann, B.M., Brewer, J., Vanderswag, H., Fleisher, A., Heidebrink, J.L., Lord, J.L., Mason, S.S., Albers, C.S., Knopman, D., Johnson, Kris, Doody, R.S., Villanueva-Meyer, J., Chowdhury, M., Rountree, S., Dang, M., Stern, Y., Honig, L.S., Bell, K.L., Ances, B., Carroll, M., Leon, S., Mintun, M.A., Schneider, S., Oliver, A., Marson, D., Griffith, R., Clark, D., Geldmacher, D., Brockington, J., Roberson, E., Grossman, H., Mitsis, E., de Toledo-Morrell, L., Shah, R.C., Duara, R., Varon, D., Greig, M.T., Roberts, P., Albert, Marilyn, Onyike, C., D’Agostino, D., Kielb, S., Galvin, J.E., Cerbone, B., Michel, C.A., Rusinek, H., de Leon, M.J., Glodzik, L., De Santi, S., Doraiswamy, P.M., Petrella, J.R., Wong, T.Z., Arnold, S.E., Karlawish, J.H., Wolk, D., Smith, C.D., Jicha, G., Hardy, P., Sinha, P., Oates, E., Conrad, G., Lopez, O.L., Oakley, M., Simpson, D.M., Porsteinsson, A.P., Goldstein, B.S., Martin, K., Makino, K.M., Ismail, M.S., Brand, C., Mulnard, R.A., Thai, G., Mc-Adams-Ortiz, C., Womack, K., Mathews, D., Quiceno, M., Diaz-Arrastia, R., King, R., Weiner, M., Martin-Cook, K., DeVous, M., Levey, A.I., Lah, J.J., Cellar, J.S., Burns, J.M., Anderson, H.S., Swerdlow, R.H., Apostolova, L., Tingus, K., Woo, E., Silverman, D.H.S., Lu, P.H., Bartzokis, G., Graff-Radford, N.R., Parfitt, F., Kendall, T., Johnson, H., Farlow, M.R., Hake, A., Matthews, B.R., Herring, S., Hunt, C., van Dyck, C.H., Carson, R.E., MacAvoy, M.G., Chertkow, H., Bergman, H., Hosein, C., Black, S., Stefanovic, B., Caldwell, C., Hsiung, G.-Y.R., Feldman, H., Mudge, B., Assaly, M., Kertesz, A., Rogers, J., Bernick, C., Munic, D., Kerwin, D., Mesulam, M.-M., Lipowski, K., Wu, C.-K., Johnson, N., Sadowsky, C., Martinez, W., Villena, T., Turner, R.S., Johnson, Kathleen, Reynolds, B., Sperling, R.A., Johnson, K.A., Marshall, G., Frey, M., Lane, B., Rosen, A., Tinklenberg, J., Sabbagh, M.N., Belden, C.M., Jacobson, S.A., Sirrel, S.A., Kowall, N., Killiany, R., Budson, A.E., Norbash, A., Johnson, P.L., Allard, J., Lerner, A., Ogrocki, P., Hudson, L., Fletcher, E., Carmichael, O., Olichney, J., DeCarli, C., Kittur, S., Borrie, M., Lee, T.-Y., Bartha, R., Johnson, S., Asthana, S., Carlsson, C.M., Potkin, S.G., Preda, A., Nguyen, D., Tariot, P., Reeder, S., Bates, V., Capote, H., Rainka, M., Scharre, D.W., Kataki, M., Adeli, A., Zimmerman, E.A., Celmins, D., Brown, A.D., Pearlson, G.D., Blank, K., Anderson, K., Santulli, R.B., Kitzmiller, T.J., Schwartz, E.S., Sink, K.M., Williamson, J.D., Garg, P., Watkins, F., Ott, B.R., Querfurth, H., Tremont, G., Salloway, S., Malloy, P., Correia, S., Rosen, H.J., Miller, B.L., Mintzer, J., Spicer, K., Bachman, D., Finger, E., Pasternak, S., Rachinsky, I., Drost, D., Pomara, N., Hernando, R., Sarrael, A., Schultz, S.K., Ponto, L.L.B., Shim, H., Smith, K.E., Relkin, N., Chaing, G., Raudin, L., Smith, A., Fargher, K., Raj, B.A., Neylan, T., Grafman, J., Davis, M., Morrison, R., Hayes, J., Finley, S., Friedl, K., Fleischman, D., Arfanakis, K., James, O., Massoglia, D., Fruehling, J.J., Harding, S., Peskind, E.R., Petrie, E.C., Li, G., Yesavage, J.A., Taylor, J.L., Furst, A.J., 2016. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934. https://doi.org/10.1038/ncomms11934 • Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J.L., Montine, T., Phelps, C., Rankin, K.P., Rowe, C.C., Scheltens, P., Siemers, E., Snyder, H.M., Sperling, R., Contributors, R., 2018. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers. Dement. 14, 535–562. https://doi.org/10.1016/j.jalz.2018.02.018 • Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Feldman, H.H., Frisoni, G.B., Hampel, H., Jagust, W.J., Johnson, K.A., Knopman, D.S., Petersen, R.C., Scheltens, P., Sperling, R.A., Dubois, B., Dubois, B., 2016. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–47. https://doi.org/10.1212/WNL.0000000000002923 • Jacobson, E. 1888-1983, Wirth, K., Klinkenberg, N., 1990. Entspannung als Therapie progressive Relaxation in Theorie und Praxis. • Jagust, W.J., Landau, S.M., Shaw, L.M., Trojanowski, J.Q., Koeppe, R.A., Reiman, E.M., Foster, N.L., Petersen, R.C., Weiner, M.W., Price, J.C., Mathis, C.A., 2009. Relationships between biomarkers in aging and dementia. Neurology 73, 1193–1199. https://doi.org/10.1212/WNL.0B013E3181BC010C • Janevic, M.R., Connell, C.M., 2001. Racial, ethnic, and cultural differences in the dementia caregiving experience: recent findings. Gerontologist 41, 334–47. https://doi.org/10.1093/geront/41.3.334 • Jefferson, A.L., Gibbons, L.E., Rentz, D.M., Carvalho, J.O., Manly, J., Bennett, D.A., Jones, R.N., 2011. A life course model of cognitive activities, socioeconomic status, education, reading ability, and cognition. J. Am. Geriatr. Soc. 59, 1403–11. https://doi.org/10.1111/j.1532-5415.2011.03499.x • Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–41. • Jeste, D. V., Alexopoulos, G.S., Bartels, S.J., Cummings, J.L., Gallo, J.J., Gottlieb, G.L., Halpain, M.C., Palmer, B.W., Patterson, T.L., Reynolds, C.F., Lebowitz, B.D., 1999. Consensus statement on the upcoming crisis in geriatric mental health: research agenda for the next 2 decades. Arch. Gen. Psychiatry 56, 848–853. https://doi.org/10.1001/ARCHPSYC.56.9.848 • Kambara, T., Brown, E.C., Jeong, J.W., Ofen, N., Nakai, Y., Asano, E., 2017. Spatio-temporal dynamics of working memory maintenance and scanning of verbal information. Clin. Neurophysiol. 128, 882–891. https://doi.org/10.1016/j.clinph.2017.03.005 • Katzman, R., Aronson, M., Fuld, P., Kawas, C., Brown, T., Morgenstern, H., Frishman, W., Gidez, L., Eder, H., Ooi, W.L., 1989. Development of dementing illnesses in an 80-year-old volunteer cohort. Ann. Neurol. 25, 317–24. https://doi.org/10.1002/ana.410250402 • Kawas, C.H., Kim, R.C., Sonnen, J.A., Bullain, S.S., Trieu, T., Corrada, M.M., 2015. Multiple pathologies are common and related to dementia in the oldest-old: The 90+ Study. Neurology 85, 535–42. https://doi.org/10.1212/WNL.0000000000001831 • Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A., 2015. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin. Neurophysiol. 126, 2132–2141. https://doi.org/10.1016/j.clinph.2015.02.060 • Kim, J., Kim, Y.H., Lee, J.H., 2013. Hippocampus-precuneus functional connectivity as an early sign of Alzheimer’s disease: A preliminary study using structural and functional magnetic resonance imaging data. Brain Res. 1495, 18–29. https://doi.org/10.1016/j.brainres.2012.12.011 • Kinsella, G., Storey, E., Crawford, J.R., 2007. EXECUTIVE FUNCTION AND ITS ASSESSMENT. Neurol. Clin. Neurosci. 83–95. https://doi.org/10.1016/B978-0-323-03354-1.50011-0 • Kirschen, M.P., Chen, S.H.A., Desmond, J.E., 2010. Modality specific cerebro-cerebellar activations in verbal working memory: An fMRI study. Behav. Neurol. 23, 51–63. https://doi.org/10.3233/BEN-2010-0266 • Kivipelto, M., Solomon, A., Ahtiluoto, S., Ngandu, T., Lehtisalo, J., Antikainen, R., Bäckman, L., Hänninen, T., Jula, A., Laatikainen, T., Lindström, J., Mangialasche, F., Nissinen, A., Paajanen, T., Pajala, S., Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., Soininen, H., 2013. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER): study design and progress. Alzheimers. Dement. 9, 657–65. https://doi.org/10.1016/j.jalz.2012.09.012 • Kurz, A., Thöne-Otto, A., Cramer, B., Egert, S., Frölich, L., Gertz, H.-J., Kehl, V., Wagenpfeil, S., Werheid, K., 2012. CORDIAL: cognitive rehabilitation and cognitive-behavioral treatment for early dementia in Alzheimer disease: a multicenter, randomized, controlled trial. Alzheimer Dis. Assoc. Disord. 26, 246–53. https://doi.org/10.1097/WAD.0b013e318231e46e • Laganà, V., Bruno, F., Altomari, N., Bruni, G., Smirne, N., Curcio, S., Mirabelli, M., Colao, R., Puccio, G., Frangipane, F., Cupidi, C., Torchia, G., Muraca, G., Malvaso, A., Addesi, D., Montesanto, A., Di Lorenzo, R., Bruni, A.C., Maletta, R., 2022. Neuropsychiatric or Behavioral and Psychological Symptoms of Dementia (BPSD): Focus on Prevalence and Natural History in Alzheimer’s Disease and Frontotemporal Dementia. Front. Neurol. 13, 832199. https://doi.org/10.3389/fneur.2022.832199 • Laird, A.R., Eickhoff, S.B., Kurth, F., Fox, P.M., Uecker, A.M., Turner, J.A., Robinson, J.L., Lancaster, J.L., Fox, P.T., 2009. ALE Meta-Analysis Workflows Via the Brainmap Database: Progress Towards A Probabilistic Functional Brain Atlas. Front. Neuroinform. 3, 23. https://doi.org/10.3389/neuro.11.023.2009 • Landau, S.M., Mintun, M.A., Joshi, A.D., Koeppe, R.A., Petersen, R.C., Aisen, P.S., Weiner, M.W., Jagust, W.J., 2012. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann. Neurol. 72, 578–586. https://doi.org/10.1002/ANA.23650 • Li, Y.Q., Yin, Z.H., Zhang, X.Y., Chen, Z.H., Xia, M.Z., Ji, L.X., Liang, F.R., 2022. Non-pharmacological interventions for behavioral and psychological symptoms of dementia: A systematic review and network meta-analysis protocol. Front. Psychiatry 13, 2736. https://doi.org/10.3389/FPSYT.2022.1039752/BIBTEX • Liesk, J., Hartogh, T., Kalbe, E., 2015. Kognitive Stimulation und Musikintervention bei stationär versorgten Menschen mit Demenz: Eine Pilotstudie, Probleme und Perspektiven. Z. Gerontol. Geriatr. 48, 275–281. https://doi.org/10.1007/s00391-014-0661-6 • Linden, D.E.J., 2012. The Challenges and Promise of Neuroimaging in Psychiatry. Neuron. https://doi.org/10.1016/j.neuron.2011.12.014 • Liu, B.T.Y., Au, A.C.L., Wong, G.H.Y., 2018. Neuropsychological aspects of cognitive stimulation therapy. Cogn. Stimul. Ther. Dement. 153–173. https://doi.org/10.4324/9781315209043-9 • Liu, T., Spector, A., Mograbi, D.C., Cheung, G., Wong, G.H.Y., 2021. Changes in default mode network connectivity in resting-state fmri in people with mild dementia receiving cognitive stimulation therapy. Brain Sci. 11, 1137. https://doi.org/10.3390/BRAINSCI11091137/S1 • Lobbia, A., Carbone, E., Faggian, S., Gardini, S., Piras, F., Spector, A., Borella, E., 2019. The Efficacy of Cognitive Stimulation Therapy (CST) for People With Mild-to-Moderate Dementia. Eur. Psychol. 24, 257–277. https://doi.org/10.1027/1016-9040/a000342 • Logan, J.M., Sanders, A.L., Snyder, A.Z., Morris, J.C., Buckner, R.L., 2002. Under-Recruitment and Nonselective Recruitment: Dissociable Neural Mechanisms Associated with Aging. Neuron 33, 827–840. https://doi.org/10.1016/S0896-6273(02)00612-8 • Logsdon RG, Gibbons LE, McCurry SM, T.L., 1999. Quality of life in Alzheimer’s disease: Patient and caregiver reports. J. Ment. Health Aging Jan 1, 5:21–32. • Lou, H.C., Luber, B., Crupain, M., Keenan, J.P., Nowak, M., Kjaer, T.W., Sackeim, H.A., Lisanby, S.H., 2004. Parietal cortex and representation of the mental Self. Proc. Natl. Acad. Sci. 101, 6827–6832. https://doi.org/10.1073/pnas.0400049101 • Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., Schmiedek, F., 2010. A Theoretical Framework for the Study of Adult Cognitive Plasticity. Psychol. Bull. 136, 659–676. https://doi.org/10.1037/a0020080 • Lu, L., Bao, G., Chen, H., Xia, P., Fan, X., Zhang, J., Pei, G., Ma, L., 2003. Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp. Neurol. 183, 600–9. https://doi.org/10.1016/s0014-4886(03)00248-6 • Lux, S., Helmstaedter, C., Elger, C.E., 1999. Normierungsstudie zum Verbalen Lern- und Merkfähigkeitstest (VLMT). Diagnostica 45, 205–211. https://doi.org/10.1026//0012-1924.45.4.205 • Lyketsos, C.G., Steinberg, M., Tschanz, J.A.T., Norton, M.C., Steffens, D.C., Breitner, J.C.S., 2000. Mental and behavioral disturbances in dementia: Findings from the cache county study on memory in aging. Am. J. Psychiatry 157, 708–714. https://doi.org/10.1176/appi.ajp.157.5.708 • Marques, P., Moreira, P., Magalhães, R., Costa, P., Santos, N., Zihl, J., Soares, J., Sousa, N., 2016. The functional connectome of cognitive reserve. Hum. Brain Mapp. 37, 3310–22. https://doi.org/10.1002/hbm.23242 • Massoud, F., Léger, G.C., 2011. Pharmacological treatment of Alzheimer disease. Can. J. Psychiatry 56, 579–588. https://doi.org/10.1177/070674371105601003 • McCarthy, P., Benuskova, L., Franz, E.A., 2014. The age-related posterior-anterior shift as revealed by voxelwise analysis of functional brain networks. Front. Aging Neurosci. 6. https://doi.org/10.3389/fnagi.2014.00301 • McDaniel, M.A., Einstein, G.O., 2011. The neuropsychology of prospective memory in normal aging: a componential approach. Neuropsychologia 49, 2147–55. https://doi.org/10.1016/j.neuropsychologia.2010.12.029 • Meltzer, J.A., Zaveri, H.P., Goncharova, I.I., Distasio, M.M., Papademetris, X., Spencer, S.S., Spencer, D.D., Constable, R.T., 2008. Effects of working memory load on oscillatory power in human intracranial EEG. Cereb. Cortex 18, 1843–1855. https://doi.org/10.1093/cercor/bhm213 • Middelstadt, J., Folkerts, A.K., Blawath, S., Kalbe, E., 2016. Cognitive stimulation for people with dementia in long-term care facilities: Baseline cognitive level predicts cognitive gains, moderated by depression. J. Alzheimer’s Dis. 54, 253–268. https://doi.org/10.3233/JAD-160181 • MJ, V., P, S., 2006. Brain reserve and dementia: a systematic review. Psychol. Med. 36. https://doi.org/10.1017/S0033291705006264 • Mkenda, S., Olakehinde, O., Mbowe, G., Siwoku, A., Kisoli, A., Paddick, S.M., Adediran, B., Gray, W.K., Dotchin, C.L., Adebiyi, A., Walker, R.W., Mushi, D., Ogunniyi, A., 2018. Cognitive stimulation therapy as a low-resource intervention for dementia in sub-Saharan Africa (CST-SSA): Adaptation for rural Tanzania and Nigeria. Dementia 17, 515–530. https://doi.org/10.1177/1471301216649272 • Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., Sano, M., Bieliauskas, L., Geldmacher, D., Clark, C., & Thal, L.J., 1997. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. Alzheimer Dis. Assoc. Disord. 11 Suppl 2, S13–S21. • Moniz-Cook, E., Vernooij-Dassen, M., Woods, R., Verhey, F., Chattat, R., De Vugt, M., Mountain, G., O’Connell, M., Harrison, J., Vasse, E., Dröes, R.M., Orrell, M., 2008. A European consensus on outcome measures for psychosocial intervention research in dementia care. Aging Ment. Heal. 12, 14–29. https://doi.org/10.1080/13607860801919850 • Moniz-Cook, E, Vernooij-Dassen, M., Woods, R., Verhey, F., Chattat, R., De Vugt, M., Mountain, G., O’Connell, M., Harrison, J., Vasse, E., Dröes, R.M., Orrell, M., INTERDEM group, 2008. A European consensus on outcome measures for psychosocial intervention research in dementia care. Aging Ment. Health 12, 14–29. https://doi.org/10.1080/13607860801919850 • Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., Mellits, E.D., Clark, C., 1989. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39, 1159–65. https://doi.org/10.1212/wnl.39.9.1159 • Mukadam, N., Cooper, C., Livingston, G., 2011. A systematic review of ethnicity and pathways to care in dementia. Int. J. Geriatr. Psychiatry 26, 12–20. https://doi.org/10.1002/gps.2484 • Muñiz, R., Serra, C.M., Reisberg, B., Rojo, J.M., Del Ser, T., Peña Casanova, J., Olazarán, J., 2015. Cognitive-motor intervention in Alzheimer’s disease: long-term results from the Maria Wolff trial. J. Alzheimers. Dis. 45, 295–304. https://doi.org/10.3233/JAD-142364 • Narayanan, N.S., Prabhakaran, V., Bunge, S.A., Christoff, K., Fine, E.M., Gabrieli, J.D.E., 2005. The role of the prefrontal cortex in the maintenance of verbal working memory: An event-related fMRI analysis. Neuropsychology 19, 223–232. https://doi.org/10.1037/0894-4105.19.2.223 • Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., Bäckman, L., Hänninen, T., Jula, A., Laatikainen, T., Lindström, J., Mangialasche, F., Paajanen, T., Pajala, S., Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., Soininen, H., Kivipelto, M., 2015. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet (London, England) 385, 2255–63. https://doi.org/10.1016/S0140-6736(15)60461-5 • Noy, N., Bickel, S., Zion-Golumbic, E., Harel, M., Golan, T., Davidesco, I., Schevon, C.A., McKhann, G.M., Goodman, R.R., Schroeder, C.E., Mehta, A.D., Malach, R., 2015. Intracranial recordings reveal transient response dynamics during information maintenance in human cerebral cortex. Hum. Brain Mapp. 36, 3988–4003. https://doi.org/10.1002/hbm.22892 • OECD, 2014. OECD. • Olazarán, J., Muñiz, R., 2017. Cognitive stimulation, training, and rehabilitation, in: Cognitive Stimulation Therapy for Dementia. Routledge, pp. 11–30. https://doi.org/10.4324/9781315209043-2 • Olazarán, J., Muñiz, R., Reisberg, B., Peña-Casanova, J., del Ser, T., Cruz-Jentoft, A.J., Serrano, P., Navarro, E., García de la Rocha, M.L., Frank, A., Galiano, M., Fernández-Bullido, Y., Serra, J.A., González-Salvador, M.T., Sevilla, C., 2004. Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer disease. Neurology 63, 2348–53. https://doi.org/10.1212/01.wnl.0000147478.03911.28 • Oldfield, R.C., 1971. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 • Onder, G., Zanetti, O., Giacobini, E., Frisoni, G.B., Bartorelli, L., Carbone, G., Lambertucci, P., Silveri, M.C., Bernabei, R., 2005. Reality orientation therapy combined with cholinesterase inhibitors in Alzheimer’s disease: randomised controlled trial. Br. J. Psychiatry 187, 450–455. https://doi.org/10.1192/bjp.187.5.450 • Orrell, M., Aguirre, E., Spector, A., Hoare, Z., Woods, R.T., Streater, A., Donovan, H., Hoe, J., Knapp, M., Whitaker, C., Russell, I., 2014. Maintenance cognitive stimulation therapy for dementia: single-blind, multicentre, pragmatic randomised controlled trial. Br. J. Psychiatry 204, 454–461. https://doi.org/10.1192/bjp.bp.113.137414 • Orrell, M., Woods, B., 1996. Editorial Comment. Tacrine and psychological therapies in dementia ? no contest? Int. J. Geriatr. Psychiatry 11, 189–192. https://doi.org/10.1002/(SICI)1099-1166(199603)11:3<189::AID-GPS312>3.0.CO;2-K • Ou, Y.N., Xu, W., Li, J.Q., Guo, Y., Cui, M., Chen, K.L., Huang, Y.Y., Dong, Q., Tan, L., Yu, J.T., 2019. FDG-PET as an independent biomarker for Alzheimer’s biological diagnosis: A longitudinal study. Alzheimer’s Res. Ther. 11, 1–11. https://doi.org/10.1186/S13195-019-0512-1/FIGURES/3 • Pascual-Leone, A., Amedi, A., Fregni, F., Merabet, L.B., 2005. The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401. https://doi.org/10.1146/annurev.neuro.27.070203.144216 • Peters, M.E., Schwartz, S., Han, D., Rabins, P. V, Steinberg, M., Tschanz, J.T., Lyketsos, C.G., 2015. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer’s dementia and death: the Cache County Dementia Progression Study. Am. J. Psychiatry 172, 460–5. https://doi.org/10.1176/appi.ajp.2014.14040480 • Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., Winblad, B., 2001. Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992. https://doi.org/10.1001/archneur.58.12.1985 • Piefke, M., Onur, Ö.A., Fink, G.R., 2012. Aging-related changes of neural mechanisms underlying visual-spatial working memory. Neurobiol. Aging 33, 1284–1297. https://doi.org/10.1016/j.neurobiolaging.2010.10.014 • Pieramico, V., Esposito, R., Sensi, F., Cilli, F., Mantini, D., Mattei, P.A., Frazzini, V., Ciavardelli, D., Gatta, V., Ferretti, A., Romani, G.L., Sensi, S.L., 2012. Combination training in aging individuals modifies functional connectivity and cognition, and is potentially affected by dopamine-related genes. PLoS One 7, e43901. https://doi.org/10.1371/journal.pone.0043901 • Pollitt, P.A., 1996. Dementia in old age: an anthropological perspective. Psychol. Med. 26, 1061–1074. https://doi.org/10.1017/S0033291700035388 • Pouryamout, L., Dams, J., Wasem, J., Dodel, R., Neumann, A., 2012. Economic evaluation of treatment options in patients with Alzheimer’s disease: a systematic review of cost-effectiveness analyses. Drugs 72, 789–802. https://doi.org/10.2165/11631830-000000000-00000 • Poveda, A.M., 2003. An anthropological perspective of Alzheimer disease. Geriatr. Nurs. (Minneap). 24, 26–31. https://doi.org/10.1067/mgn.2003.15 • Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., Ferri, C.P., 2013. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers. Dement. 9, 63-75.e2. https://doi.org/10.1016/j.jalz.2012.11.007 • Quintana-Hernández, D.J., Miró-Barrachina, M.T., Ibáñez-Fernández, I.J., Pino, A.S.-D., Quintana-Montesdeoca, M.P., Rodríguez-de Vera, B., Morales-Casanova, D., Pérez-Vieitez, M.D.C., Rodríguez-García, J., Bravo-Caraduje, N., 2016. Mindfulness in the Maintenance of Cognitive Capacities in Alzheimer’s Disease: A Randomized Clinical Trial. J. Alzheimers. Dis. 50, 217–32. https://doi.org/10.3233/JAD-143009 • R Core Team, 2013. A language and environment for statistical computing. R Foundation for Statistical Computing [WWW Document]. URL http://www.r-project.org/ • Reuter-Lorenz, P.A., Cappell, K.A., 2008. Neurocognitive Aging and the Compensation Hypothesis. • Rodewald, K., Bartolovic, M., Debelak, R., Aschenbrenner, S., Weisbrod, M., Roesch-Ely, D., 2012. Eine Normierungsstudie eines modifizierten Trail Making Tests im deutschsprachigen Raum. Zeitschrift für Neuropsychol. 23, 37–48. https://doi.org/10.1024/1016-264X/a000060 • Roe, C.M., Xiong, C., Miller, J.P., Morris, J.C., 2007. Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology 68, 223–8. https://doi.org/10.1212/01.wnl.0000251303.50459.8a • Rose, E.J., Donohoe, G., 2013. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr. Bull. 39, 518–26. https://doi.org/10.1093/schbul/sbs056 • Rosen, A.C., Sugiura, L., Kramer, J.H., Whitfield-Gabrieli, S., Gabrieli, J.D., 2011. Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. J. Alzheimer’s Dis. 26, 349–357. https://doi.org/10.3233/JAD-2011-0009 • Rosen, W.G., Mohs, R.C., Davis, K.L., 1984. A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 141. https://doi.org/10.1176/ajp.141.11.1356 • Satizabal, C.L., Beiser, A.S., Chouraki, V., Chêne, G., Dufouil, C., Seshadri, S., 2016. Incidence of Dementia over Three Decades in the Framingham Heart Study. N. Engl. J. Med. 374, 523–532. https://doi.org/10.1056/NEJMoa1504327 • Sato, T., Hanyu, H., Hirao, K., Kanetaka, H., Sakurai, H., Iwamoto, T., 2011. Treatment of Alzheimer Disease. Am. Fam. Physician 83, 1403–1412. https://doi.org/10.1016/j.neurobiolaging.2009.10.009 • Schloffer, H., Prang, E., Frick-Salzmann, A., 2010. Gedächtnistraining, Gedächtnistraining. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01067-5 • Schmahmann, J.D., 2010. The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol. Rev. https://doi.org/10.1007/s11065-010-9142-x • Schwarzer, R., & Jerusalem, M., 1995. Generalized Self-Efficacy scale. J. Weinman, S. Wright, M. Johnston, Meas. Heal. Psychol. A user’s portfolio. Causal Control beliefs 35–37. • Seibert, M., Mühlbauer, V., Holbrook, J., Voigt-Radloff, S., Brefka, S., Dallmeier, D., Denkinger, M., Schönfeldt-Lecuona, C., Klöppel, S., von Arnim, C.A.F., 2021. Efficacy and safety of pharmacotherapy for Alzheimer’s disease and for behavioural and psychological symptoms of dementia in older patients with moderate and severe functional impairments: a systematic review of controlled trials. Alzheimers. Res. Ther. 13, 131. https://doi.org/10.1186/s13195-021-00867-8 • Serra, L., Mancini, M., Cercignani, M., Di Domenico, C., Spanò, B., Giulietti, G., Koch, G., Marra, C., Bozzali, M., 2017. Network-Based Substrate of Cognitive Reserve in Alzheimer’s Disease. J. Alzheimers. Dis. 55, 421–430. https://doi.org/10.3233/JAD-160735 • Shigihara, Y., Hoshi, H., Shinada, K., Okada, T., Kamada, H., 2020. Non-pharmacological treatment changes brain activity in patients with dementia. Sci. Rep. 10, 6744. https://doi.org/10.1038/s41598-020-63881-0 • Sims, J.R., Zimmer, J.A., Evans, C.D., Lu, M., Ardayfio, P., Sparks, J., Wessels, A.M., Shcherbinin, S., Wang, H., Monkul Nery, E.S., Collins, E.C., Solomon, P., Salloway, S., Apostolova, L.G., Hansson, O., Ritchie, C., Brooks, D.A., Mintun, M., Skovronsky, D.M., Abreu, R., Agarwal, P., Aggarwal, P., Agronin, M., Allen, A., Altamirano, D., Alva, G., Andersen, J., Anderson, A., Anderson, D., Arnold, J., Asada, T., Aso, Y., Atit, V., Ayala, R., Badruddoja, M., Badzio-jagiello, H., Bajacek, M., Barton, D., Bear, D., Benjamin, S., Bergeron, R., Bhatia, P., Black, S., Block, A., Bolouri, M., Bond, W., Bouthillier, J., Brangman, S., Brew, B., Brisbin, S., Brisken, T., Brodtmann, A., Brody, M., Brosch, J., Brown, C., Brownstone, P., Bukowczan, S., Burns, J., Cabrera, A., Capote, H., Carrasco, A., Cevallos Yepez, J., Chavez, E., Chertkow, H., Chyrchel-paszkiewicz, U., Ciabarra, A., Clemmons, E., Cohen, D., Cohen, R., Cohen, I., Concha, M., Costell, B., Crimmins, D., Cruz-pagan, Y., Cueli, A., Cupelo, R., Czarnecki, M., Darby, D., Dautzenberg, P. l. j., De Deyn, P., De La Gandara, J., Deck, K., Dibenedetto, D., Dibuono, M., Dinnerstein, E., Dirican, A., Dixit, S., Dobryniewski, J., Drake, R., Drysdale, P., Duara, R., Duffy, J., Ellenbogen, A., Faradji, V., Feinberg, M., Feldman, R., Fishman, S., Flitman, S., Forchetti, C., Fraga, I., Frank, A., Frishberg, B., Fujigasaki, H., Fukase, H., Fumero, I., Furihata, K., Galloway, C., Gandhi, R., George, K., Germain, M., Gitelman, D., Goetsch, N., Goldfarb, D., Goldstein, M., Goldstick, L., Gonzalez Rojas, Y., Goodman, I., Greeley, D., Griffin, C., Grigsby, E., Grosz, D., Hafner, K., Hart, D., Henein, S., Herskowitz, B., Higashi, S., Higashi, Y., Ho, G., Hodgson, J., Hohenberg, M., Hollenbeck, L., Holub, R., Hori, T., Hort, J., Ilkowski, J., Ingram, K.J., Isaac, M., Ishikawa, M., Janu, L., Johnston, M., Julio, W., Justiz, W., Kaga, T., Kakigi, T., Kalafer, M., Kamijo, M., Kaplan, J., Karathanos, M., Katayama, S., Kaul, S., Keegan, A., Kerwin, D., Khan, U., Khan, A., Kimura, N., Kirk, G., Klodowska, G., Kowa, H., Kutz, C., Kwentus, J., Lai, R., Lall, A., Lawrence, M., Lee, E., Leon, R., Linker, G., Lisewski, P., Liss, J., Liu, C., Losk, S., Lukaszyk, E., Lynch, J., Macfarlane, S., Macsweeney, J., Mannering, N., Markovic, O., Marks, D., Masdeu, J., Matsui, Y., Matsuishi, K., Mcallister, P., Mcconnehey, B., Mcelveen, A., Mcgill, L., Mecca, A., Mega, M., Mensah, J., Mickielewicz, A., Minaeian, A., Mocherla, B., Murphy, C., Murphy, P., Nagashima, H., Nair, A., Nair, M., Nardandrea, J., Nash, M., Nasreddine, Z., Nishida, Y., Norton, J., Nunez, L., Ochiai, J., Ohkubo, T., Okamura, Y., Okorie, E., Olivera, E., O’mahony, J., Omidvar, O., Ortiz-Cruz, D., Osowa, A., Papka, M., Parker, A., Patel, P., Patel, A., Patel, M., Patry, C., Peckham, E., Pfeffer, M., Pietras, A., Plopper, M., Porsteinsson, A., Poulin Robitaille, R., Prins, N., Puente, O., Ratajczak, M., Rhee, M., Ritter, A., Rodriguez, R., Rodriguez Ables, L., Rojas, J., Ross, J., Royer, P., Rubin, J., Russell, D., Rutgers, S.M., Rutrick, S., Sadowski, M., Safirstein, B., Sagisaka, T., Scharre, D., Schneider, L., Schreiber, C., Schrift, M., Schulz, P., Schwartz, H., Schwartzbard, J., Scott, J., Selem, L., Sethi, P., Sha, S., Sharlin, K., Sharma, S., Shiovitz, T., Shiwach, R., Sladek, M., Sloan, B., Smith, A., Solomon, P., Sorial, E., Sosa, E., Stedman, M., Steen, S., Stein, L., Stolyar, A., Stoukides, J., Sudoh, S., Sutton, J., Syed, J., Szigeti, K., Tachibana, H., Takahashi, Y., Tateno, A., Taylor, J.D., Taylor, K., Tcheremissine, O., Thebaud, A., Thein, S., Thurman, L., Toenjes, S., Toji, H., Toma, M., Tran, D., Trueba, P., Tsujimoto, M., Turner, R., Uchiyama, A., Ussorowska, D., Vaishnavi, S., Valor, E., Vandersluis, J., Vasquez, A., Velez, J., Verghese, C., Vodickova-borzova, K., Watson, D., Weidman, D., Weisman, D., White, A., Willingham, K., Winkel, I., Winner, P., Winston, J., Wolff, A., Yagi, H., Yamamoto, H., Yathiraj, S., Yoshiyama, Y., Zboch, M., Zboch, M., 2023. Donanemab in Early Symptomatic Alzheimer Disease. JAMA 330, 512. https://doi.org/10.1001/jama.2023.13239 • Sink, K.M., Holden, K.F., Yaffe, K., 2005. Pharmacological treatment of neuropsychiatric symptoms of dementia: A review of the evidence. J. Am. Med. Assoc. https://doi.org/10.1001/jama.293.5.596 • Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Clemente, I.C., Molinuevo, J.L., Bargalló, N., Sánchez-Aldeguer, J., Bosch, B., Falcón, C., Valls-Solé, J., 2006. Repetitive Transcranial Magnetic Stimulation Effects on Brain Function and Cognition among Elders with Memory Dysfunction. A Randomized Sham-Controlled Study. Cereb. Cortex 16, 1487–1493. https://doi.org/10.1093/cercor/bhj083 • Spector, A., Thorgrimsen, L., Woods, B., and Orrell, M., 2006. Making a difference: A evidence based group program to offer Cognitive Stimulation Therapy (CST) to people with dementia. Hawker Publ. UK. • Spector, A., 2005. Our time, An evidence based group program to offer cognitive stimulation to people with dementia - Manual for group leaders. Freibg. Press. Iowa. • Spector, A., Orrell, M., Hall, L., 2012. Systematic review of neuropsychological outcomes in dementia from cognition-based psychological interventions. Dement. Geriatr. Cogn. Disord. https://doi.org/10.1159/000343931 • Spector, A., Orrell, M., Woods, B., 2010. Cognitive Stimulation Therapy (CST): effects on different areas of cognitive function for people with dementia. Int. J. Geriatr. Psychiatry 25, 1253–8. https://doi.org/10.1002/gps.2464 • Spector, A., Thorgrimsen, L., Woods, B., Royan, L., Davies, S., Butterworth, M., Orrell, M., 2003. Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial. Br. J. Psychiatry 183, 248–254. https://doi.org/10.1192/BJP.183.3.248 • Steffener, J., Stern, Y., 2012. Exploring the neural basis of cognitive reserve in aging. Biochim. Biophys. Acta 1822, 467–73. https://doi.org/10.1016/j.bbadis.2011.09.012 • Stern, Y., 2012. Cognitive reserve in ageing and Alzheimer’s disease. Lancet. Neurol. 11, 1006–12. https://doi.org/10.1016/S1474-4422(12)70191-6 • Stern, Y., 2006. Cognitive reserve and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 20, 112–7. https://doi.org/10.1097/01.wad.0000213815.20177.19 • STERN, Y., 2002. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 8, 448–460. https://doi.org/10.1017/S1355617702813248 • Strikwerda-Brown, C., Grilli, M.D., Andrews-Hanna, J., Irish, M., 2019. "All is not lost"-Rethinking the nature of memory and the self in dementia. Ageing Res. Rev. 54, 100932. https://doi.org/10.1016/j.arr.2019.100932 • Valenzuela, M.J., Jones, M., Caroline Rae, W.W., Graham, S., Shnier, R., Sachdev, P., 2003. Memory training alters hippocampal neurochemistry in healthy elderly. Neuroreport 14, 1333–1337. https://doi.org/10.1097/01.wnr.0000077548.91466.05 • van Dyck, C.H., Swanson, C.J., Aisen, P., Bateman, R.J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L.D., Iwatsubo, T., 2023. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 388, 9–21. https://doi.org/10.1056/NEJMoa2212948 • van Os, Y., de Vugt, M.E., van Boxtel, M., 2015. Cognitive Interventions in Older Persons: Do They Change the Functioning of the Brain? Biomed Res. Int. 2015, 438908. https://doi.org/10.1155/2015/438908 • Vemuri, P., Fields, J., Peter, J., Klöppel, S., 2016. Cognitive interventions in Alzheimer’s and Parkinson’s diseases: emerging mechanisms and role of imaging. Curr. Opin. Neurol. 29, 405–11. https://doi.org/10.1097/WCO.0000000000000346 • Vuoksimaa, E., Panizzon, M.S., Chen, C.-H., Eyler, L.T., Fennema-Notestine, C., Fiecas, M.J.A., Fischl, B., Franz, C.E., Grant, M.D., Jak, A.J., Lyons, M.J., Neale, M.C., Thompson, W.K., Tsuang, M.T., Xian, H., Dale, A.M., Kremen, W.S., 2013. Cognitive reserve moderates the association between hippocampal volume and episodic memory in middle age. Neuropsychologia 51, 1124–31. https://doi.org/10.1016/j.neuropsychologia.2013.02.022 • Wang, J., 2010. Graph-based network analysis of resting-state functional MRI. Front. Syst. Neurosci. 4, 1–14. https://doi.org/10.3389/fnsys.2010.00016 • Wang, J., Gu, Y., Dong, W., Zhao, M., Tian, J., Sun, T., Yu, X., Ouyang, G., Wang, H., 2020. Lower Small-Worldness of Intrinsic Brain Networks Facilitates the Cognitive Protection of Intellectual Engagement in Elderly People Without Dementia: A Near-Infrared Spectroscopy Study. Am. J. Geriatr. Psychiatry 28, 722–731. https://doi.org/10.1016/j.jagp.2020.02.006 • Wenger, E., Lövdén, M., 2016. The Learning Hippocampus: Education and Experience-Dependent Plasticity. Mind, Brain, Educ. 10, 171–183. https://doi.org/10.1111/mbe.12112 • Werheid, K., Schaubs, B., Aguirre, E., Spector, A., 2021. Cognitive Stimulation Therapy. GeroPsych (Bern). 34, 117–124. https://doi.org/10.1024/1662-9647/a000244 • Werheid, K., Thöne-Otto, · A, 2006. Kognitives Training bei Alzheimer-Demenz. Nervenarzt 77, 549–557. https://doi.org/10.1007/s00115-005-1998-2 • Werner, P., 2005. Social distance towards a person with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 20, 182–188. https://doi.org/10.1002/GPS.1268 • Whitehouse, P.J., Gaines, A.D., Lindstrom, H., Graham, J.E., 2005. Anthropological contributions to the understanding of age-related cognitive impairment. Lancet. Neurol. 4, 320–326. https://doi.org/10.1016/S1474-4422(05)70075-2 • Whitfield-Gabrieli, S., Nieto-Castanon, A., 2012. Conn : A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect. 2, 125–141. https://doi.org/10.1089/brain.2012.0073 • Wickham, H., 2016. ggplot2, 2nd ed. Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4 • WILSON, B.A., 1997. Cognitive Rehabilitation: How it is and how it might be. J. Int. Neuropsychol. Soc. 3, 487–496. https://doi.org/10.1017/S1355617797004876 • Wilson, R.S., Yu, L., Lamar, M., Schneider, J.A., Boyle, P.A., Bennett, D.A., 2019. Education and cognitive reserve in old age. Neurology 92, e1041–e1050. https://doi.org/10.1212/WNL.0000000000007036 • Wolf, S.A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., Kempermann, G., 2006. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol. Psychiatry 60, 1314–23. https://doi.org/10.1016/j.biopsych.2006.04.004 • Woods, B., Aguirre, E., Spector, A.E., Orrell, M., 2012. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd005562.pub2 • Woods, B., Rai, H.K., Elliott, E., Aguirre, E., Orrell, M., Spector, A., 2023. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst. Rev. 2023. https://doi.org/10.1002/14651858.CD005562.pub3 • World Health Organization and Alzheimer’s disease International, 2012. DEMENTIA A public Helath Priority. World Heal. Organ. 1–4. • Yamanaka, K., Kawano, Y., Noguchi, D., Nakaaki, S., Watanabe, N., Amano, T., Spector, A., 2013. Effects of cognitive stimulation therapy Japanese version (CST-J) for people with dementia: a single-blind, controlled clinical trial. Aging Ment. Health 17, 579–86. https://doi.org/10.1080/13607863.2013.777395 • Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R.C., Di Martino, A., Li, Q., Zuo, X.-N., Castellanos, F.X., Milham, M.P., 2013. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76, 183–201. https://doi.org/10.1016/j.neuroimage.2013.03.004 • Yang, H., Leaver, A.M., Siddarth, P., Paholpak, P., Ercoli, L., St. Cyr, N.M., Eyre, H.A., Narr, K.L., Khalsa, D.S., Lavretsky, H., 2016. Neurochemical and Neuroanatomical Plasticity Following Memory Training and Yoga Interventions in Older Adults with Mild Cognitive Impairment. Front. Aging Neurosci. 8, 277. https://doi.org/10.3389/fnagi.2016.00277 • Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T., Initiative, the A.D.N., 2010. Abnormal Cortical Networks in Mild Cognitive Impairment and Alzheimer’s Disease. PLoS Comput. Biol. 6, e1001006. https://doi.org/10.1371/journal.pcbi.1001006 • Yarkoni, T., Westfall, J., 2017. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect. Psychol. Sci. 12, 1100–1122. https://doi.org/10.1177/1745691617693393 • Yates, L.A.., Yates, J., Orrell, M., Spector, A., Woods, R.T.., 2019. Cognitive stimulation therapy for dementia : history, evolution and internationalism. Routledge. • Zhang, W., Johndro, H., Budson, A.E., Gutchess, A., 2020. Influence of self-referential mode on memory for aMCI patients. Cogn. Neuropsychol. 37, 46–57. https://doi.org/10.1080/02643294.2019.1657390 • Zhao, Q., Guo, Q., Liang, X., Chen, M., Zhou, Y., Ding, D., Hong, Z., 2015. Auditory Verbal Learning Test is Superior to Rey-Osterrieth Complex Figure Memory for Predicting Mild Cognitive Impairment to Alzheimer’s Disease. Curr. Alzheimer Res. 12, 520–526. https://doi.org/10.2174/1567205012666150530202729 | ||||||||
Refereed: | Yes | ||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/75217 |
Downloads
Downloads per month over past year
Export
Actions (login required)
![]() |
View Item |