Esch, Sabrina (2018). Determination of Soil Moisture and Vegetation Parameters from Spaceborne C-Band SAR on Agricultural Areas. PhD thesis, Universität zu Köln.
|
PDF
Dissertation_Esch_Veroeffentlichung_final.pdf Download (5MB) |
Abstract
Soil moisture is an important factor influencing hydrological and meteorological exchange processes at the land surface. As ground measurements of soil moisture cannot provide spatial-ly distributed information, remote sensing of soil moisture using Synthetic Aperture Radar (SAR) offers an alternative. To derive soil moisture from vegetated areas with SAR, the influ-ence of vegetation parameters on SAR backscatter must be considered, though. The first part of the study analyses the potential to use a qualitative soil moisture index from ERS-SAR with high spatial resolution that can be used without ground truth soil moisture and vegetation data. The index ranges from low to high soil moisture instead of giving absolute soil moisture values. The method is applied to agricultural areas in the catchment of the river Rur in Germany. The soil moisture index represents wetting and drying tendencies well when compared to precipitation records and behaves like in-situ soil moisture regarding its variabil-ity. The analysis of spatial patterns from the soil moisture index by using semivariograms re-veals that differences in management that result for example in differences in evapotranspira-tion from one to the next agricultural field, are the only influence on spatial patterns of soil moisture in the Rur catchment. This study confirms the applicability of a high-resolution soil moisture index for monitoring soil moisture changes and to analyze spatial soil moisture pat-terns. The soil moisture index could be used as input to hydrological models and could substi-tute antecedent precipitation, which needs precipitation stations, as a proxy to soil moisture. The second part of the study examines the capability of dual-polarimetric C-Band SAR data with high incidence angles from the Sentinel-1 satellites to derive soil moisture and vegetation parameters quantitatively. A processing scheme for Sentinel-1 Level-1 data is presented to produce images of different SAR observables that are compared to extensive ground meas-urements of soil moisture and vegetation parameters. It shows that soil moisture retrieval is feasible from bare soil and maize with an RMSE of 7 Vol%. From other land use types, dif-ferent vegetation parameters could be retrieved with an error of around 25 % of their range, in median. Neither soil moisture nor vegetation parameters could be derived from grassland and triticale due to the influence of the thatch layer and the missing of a clear row structure. Both grassland and triticale are in contrast to the other crops not sown in rows on our research fields. The analysis has shown that the incidence angle is of main importance for the capability of C-band SAR to derive soil moisture and that the availability of at least one co- and cross-polarized channel is important for the quantitative retrieval of land surface parameters. The dual-pol H2α parameters were not meaningful for soil moisture and vegetation parameter re-trieval in this study.
Item Type: | Thesis (PhD thesis) | ||||||||||||
Translated abstract: |
|
||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-80476 | ||||||||||||
Date: | January 2018 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Geosciences > Geographisches Institut | ||||||||||||
Subjects: | Natural sciences and mathematics Earth sciences Agriculture |
||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Date of oral exam: | 9 January 2018 | ||||||||||||
Referee: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/8047 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |