Klostermann, Inka (2011). Generalization of the Macdonald formula for Hall-Littlewood polynomials. PhD thesis, Universität zu Köln.

[img]
Preview
PDF
DissInkaKlostermannohneLebenslauf.pdf

Download (557kB)

Abstract

We study the Gaussent-Littelmann formula for Hall-Littlewood polynomials and we develop combinatorial tools to describe the formula in a purely combinatorial way for type An, Bn and Cn. This description is in terms of Young tableaux and arises from identifying one-skeleton galleries that appear in the Gaussent-Littelmann formula with Young tableaux. Furthermore, we show by using these tools that the Gaussent-Littelmann formula and the well-known Macdonald formula for Hall-Littlewood polynomials for type An are the same.

Item Type: Thesis (PhD thesis)
Translated title:
TitleLanguage
Verallgemeinerung der Macdonald Formel für Hall-Littlewood PolynomeGerman
Translated abstract:
AbstractLanguage
In dieser Arbeit verleihen wir der Gaussent-Littelmann Formel für Hall-Littlewood Polynome eine rein kombinatorische Gestalt für die Typen An, Bn und Cn indem wir von den in der Formel verwendeten One-Skeleton Galerien zu Young Tableaux übergehen. Mithilfe dieser kombinatorischen Beschreibung zeigen wir weiter, dass die Gaussent-Littelmann Formel und die bekannte Macdonald Formel für Hall-Littlewood Polynome vom Typ An übereinstimmen.German
Creators:
CreatorsEmailORCID
Klostermann, Inkaikloster@math.uni-koeln.deUNSPECIFIED
URN: urn:nbn:de:hbz:38-44909
Subjects: Mathematics
Uncontrolled Keywords:
KeywordsLanguage
Hall-Littlewood polynomials, symmetric polynomialsEnglish
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Mathematical Institute
Language: English
Date: 2011
Date of oral exam: 8 December 2011
Referee:
NameAcademic Title
Littelmann, PeterProf. Dr,
Full Text Status: Public
Date Deposited: 12 Jan 2012 14:37
URI: http://kups.ub.uni-koeln.de/id/eprint/4490

Downloads

Downloads per month over past year

Export

Actions (login required)

View Item View Item