Klostermann, Inka
(2011).
Generalization of the Macdonald formula for Hall-Littlewood polynomials.
PhD thesis, Universität zu Köln.
Abstract
We study the Gaussent-Littelmann formula for Hall-Littlewood polynomials and we develop combinatorial tools to describe the formula in a purely combinatorial way for type An, Bn and Cn. This description is in terms of Young tableaux and arises from identifying one-skeleton galleries that appear in the Gaussent-Littelmann formula with Young tableaux. Furthermore, we show by using these tools that the Gaussent-Littelmann formula and the well-known Macdonald formula for Hall-Littlewood polynomials for type An are the same.
Item Type: |
Thesis
(PhD thesis)
|
Translated title: |
Title | Language |
---|
Verallgemeinerung der Macdonald Formel für Hall-Littlewood Polynome | German |
|
Translated abstract: |
Abstract | Language |
---|
In dieser Arbeit verleihen wir der Gaussent-Littelmann Formel für Hall-Littlewood Polynome eine rein kombinatorische Gestalt für die Typen An, Bn und Cn indem wir von den in der Formel verwendeten One-Skeleton Galerien zu Young Tableaux übergehen. Mithilfe dieser kombinatorischen Beschreibung zeigen wir weiter, dass die Gaussent-Littelmann Formel und die bekannte Macdonald Formel für Hall-Littlewood Polynome vom Typ An übereinstimmen. | German |
|
Creators: |
Creators | Email | ORCID | ORCID Put Code |
---|
Klostermann, Inka | ikloster@math.uni-koeln.de | UNSPECIFIED | UNSPECIFIED |
|
URN: |
urn:nbn:de:hbz:38-44909 |
Date: |
2011 |
Language: |
English |
Faculty: |
Faculty of Mathematics and Natural Sciences |
Divisions: |
Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute |
Subjects: |
Mathematics |
Uncontrolled Keywords: |
Keywords | Language |
---|
Hall-Littlewood polynomials, symmetric polynomials | English |
|
Date of oral exam: |
8 December 2011 |
Referee: |
Name | Academic Title |
---|
Littelmann, Peter | Prof. Dr, |
|
Refereed: |
Yes |
URI: |
http://kups.ub.uni-koeln.de/id/eprint/4490 |
Downloads per month over past year
Export
Actions (login required)
|
View Item |