Kotschenreuther, Konstantin ORCID: 0000-0001-9455-2444 (2026). Influence of the Cannabinoids Anandamide and Cannabidiol on Cytokine Production by CD4+ T Cells and Th17 Differentiation in Patients with Rheumatoid Arthritis. PhD thesis, Universität zu Köln.

[thumbnail of Doktorarbeit_Kotschenreuther_vRevisionsschein2.pdf] PDF
Doktorarbeit_Kotschenreuther_vRevisionsschein2.pdf

Download (3MB)

Abstract

This work is based on investigations into the effects of cannabinoids such as cannabidiol (CBD) and anandamide (AEA) on phenotypic changes in cluster of differentiation 4-positive (CD4+) T cells from patients suffering from rheumatic autoimmune diseases, particularly rheumatoid arthritis (RA). Cannabinoids such as CBD are becoming increasingly prevalent in society and are often recommended for the treatment of various conditions, including RA. This is further underscored by the new German Cannabis Act (CanG), which regulates the handling of cannabis as of April 1, 2024, and, among other changes, eased access to medicinal cannabis. This is expected to further increase public acceptance and unsupervised use of cannabis and its derivatives. Additionally, the anticipated analgesic properties of CBD have led to increased use among RA patients seeking alternatives or supplements to their existing pain management plans. Given this growing prevalence of CBD use, often without medical supervision, it is clear that a better understanding of the full spectrum of CBD effects is necessary. Only in this way can patients be adequately informed about the benefits and risks associated with incorporating CBD into their existing medication plans. Alongside the increasing prevalence of cannabinoid use, our understanding of RA as a disease is also advancing. While the focus of RA research was initially on T helper 1 (Th1) cells, T helper 17 (Th17) cells and their interplay with regulatory T (Treg) cells are gaining importance as potential key players in the pathogenesis of RA. This enables a more precise investigation of potential therapeutics like CBD and their effects on RA-specific pathomechanisms. Our knowledge regarding the influence of CBD on Th17 cells and its significance in the context of RA is still incomplete. The aim of this work is to gain a deeper understanding of the effects of cannabinoids on Th17 differentiation and Interleukin-17A (IL-17A) positivity. With this objective, comprehensive in vitro studies were conducted to establish direct relationships between cannabinoid exposure and CD4+ T cell properties. Analysis of cannabinoid receptors 1 and 2 (CB1, CB2) showed no significant differences between RA patients and healthy controls, though a notable trend toward increased G-protein coupled receptor 55 (GPR55) expression was observed in RA and psoriatic arthritis patients. The results demonstrate that CBD significantly reduced CD4+ T cell viability while paradoxically increasing the proportion of IL-17A-positive cells, particularly in RA patients. This effect persisted even under Th17-polarizing conditions. Gene expression analysis revealed that CBD significantly upregulated serum glucocorticoid-regulated kinase 1 (SGK1) while downregulating colony stimulating factor 2 (CSF2) in RA patients, suggesting complex modulation of inflammation-related pathways. Despite increased cellular IL-17A positivity, ELISA analysis showed reduced secretion of IL-17A, interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) in culture supernatants, potentially due to the substantial cytotoxic effects observed. Importantly, preliminary observational data from patients self-reporting non-standardized CBD use showed both increased IL-17A-positive CD4+ T cell percentages and elevated disease activity scores, aligning with our in vitro findings. Although CBD was able to reduce TNF-α- and IFN-γ-positive CD4+ T cells, our understanding of RA as an increasingly Th17 cell-mediated disease suggests that CBD use in RA patients could be detrimental from an autoimmunity perspective. This is primarily due to the finding that CBD led to an increased proportion of IL-17A-positive cells among CD4+ T cells, which should be taken into account when considering recommending CBD as a therapy supplement. However, further studies are required to understand the mechanism of action leading to the effects observed here. In vivo mouse studies should also be conducted to better understand the effects of CBD consumption in relation to the multiple and complex interactions within the body. It is also essential to analyze the extent to which the in vitro results presented here can be translated directly to patients given the high doses of CBD used in these experiments. So far, the data is not sufficient to unreservedly recommend CBD as a treatment approach for RA patients. Further studies are necessary to evaluate the potential and risks of cannabinoids in RA therapy and to make a recommendation for RA therapy.

Item Type: Thesis (PhD thesis)
Translated abstract:
Abstract
Language
Diese Arbeit basiert auf Untersuchungen zu den Auswirkungen der Cannabinoide Cannabidiol (CBD) und Anandamid (AEA) auf phänotypische Veränderungen in Cluster of Differentiation 4-positiven (CD4+) T-Zellen von Patienten, die an rheumatischen Autoimmunerkrankungen, insbesondere rheumatoider Arthritis (RA), leiden. Cannabinoide wie CBD werden in der Gesellschaft immer präsenter und oft pauschal zur Behandlung verschiedener Erkrankungen, einschließlich der RA, empfohlen. Dies wird durch das neue Cannabisgesetz (CanG) unterstrichen, das zum 1. April 2024 den Umgang mit Cannabis in Deutschland neu regelte und unter anderem den Zugang zu medizinischem Cannabis erleichterte. Hierdurch ist eine weitere Zunahme der Akzeptanz und des Konsums von Cannabis und Cannabisderivaten ohne medizinische Aufsicht zu erwarten. Zusätzlich haben die erhofften analgetischen Eigenschaften von CBD zu einer vermehrten Nutzung unter RA-Patienten geführt, die nach Alternativen oder Ergänzungen zu ihrer bestehenden Schmerzmedikation suchen. Angesichts dieser zunehmenden Verbreitung der CBD-Nutzung, oft ohne medizinische Aufsicht, ist es klar, dass ein besseres Verständnis des gesamten Spektrums der CBD-Effekte notwendig ist. Nur so können Patienten ausreichend über die Vorteile und Risiken informiert werden, die mit der Aufnahme von CBD in ihre bestehenden Medikationspläne einhergehen. Neben der zunehmenden Verbreitung des Cannabinoidkonsums schreitet auch unser Verständnis der RA als Krankheit voran. Während der Schwerpunkt der RA-Forschung ursprünglich auf T-Helfer 1 (Th1)-Zellen lag, gewinnen T-Helfer 17 (Th17)-Zellen und ihr Zusammenspiel mit regulatorischen T (Treg)-Zellen als mögliche zentrale Akteure in der Pathogenese der RA an Bedeutung. Dies ermöglicht eine präzisere Untersuchung potenzieller Therapeutika wie CBD und deren Auswirkungen auf RA-spezifische Pathomechanismen. Unser Wissen über den Einfluss von CBD auf Th17-Zellen und dessen Bedeutung im Kontext der RA ist noch unvollständig. Ziel dieser Arbeit ist es, ein tieferes Verständnis der Auswirkungen von den Cannabinoiden CBD und AEA auf die Th17-Differenzierung und Interleukin-17A (IL-17A) Positivität zu erlangen. Mit diesem Ziel wurden umfassende in vitro Studien durchgeführt, um direkte Zusammenhänge zwischen Cannabinoidexposition und CD4+ T-Zell-Eigenschaften herzustellen. Die Analyse von Cannabinoid-Rezeptoren 1 und 2 (CB1, CB2) sowie des G-Protein-gekoppelten Rezeptors 55 (GPR55) zeigte keine signifikanten Unterschiede zwischen RA-Patienten und gesunden Kontrollen, obwohl eine bemerkenswerte Tendenz zu erhöhter GPR55 Expression bei RA- und Psoriasis-Arthritis-Patienten beobachtet wurde. Die Ergebnisse zeigen, dass CBD die Lebensfähigkeit von CD4+ T-Zellen signifikant reduzierte, während paradoxerweise der Anteil IL-17A-positiver Zellen, insbesondere bei RA-Patienten, erhöht wurde. Dieser Effekt blieb auch unter Th17-polarisierenden Bedingungen bestehen. Die Genexpressionsanalyse zeigte, dass CBD bei RA-Patienten Serum-Glucocorticoid-Kinase 1 (SGK1) signifikant hochregulierte und Kolonie-stimulierenden Faktor 2 (CSF2) herunterregulierte, was auf eine komplexe Modulation entzündungsbezogener Signalwege hindeutet. Trotz erhöhter zellulärer IL-17A-Positivität zeigte die ELISA-Analyse eine reduzierte Sekretion von IL-17A, Interferon-Gamma (IFN-γ) und Tumornekrosefaktor-alpha (TNF-α) im Zellkulturmedium, möglicherweise aufgrund der beobachteten erheblichen zytotoxischen Effekte. Vorläufige klinische Beobachtungen von Patienten, die über nicht-standardisierten eigenen CBD-Konsum berichteten, zeigten sowohl einen Anstieg des Anteils IL-17A-positiver CD4+ T-Zellen als auch erhöhte Krankheitsaktivitätswerte, was mit unseren in vitro Ergebnissen übereinstimmt. Obwohl CBD gleichzeitig den Anteil an TNF-α und IFN-γ positiven CD4+ Zellen reduzieren konnte, deutet unser erweitertes Verständnis der RA als eine überwiegend von Th17-Zellen vermittelte Erkrankung darauf hin, dass der Konsum von CBD bei RA-Patienten aus Sicht der Autoimmunität nachteilig sein könnte. Diese Vermutung ist hauptsächlich auf die Erkenntnis zurückzuführen, dass CBD zu einem erhöhten Anteil an IL-17A-positiver Zellen unter CD4+ T-Zellen geführt hat, was bei der Empfehlung von CBD als Therapieergänzung berücksichtigt werden sollte. Allerdings sind weitere Studien erforderlich, um den Wirkmechanismus, der zu den hier beobachteten Effekten führt, zu verstehen. Zusätzlich sollten In-vivo-Mäusestudien durchgeführt werden, um die Auswirkungen des CBD-Konsums im Hinblick auf die vielfältigen und komplexen Wechselwirkungen im Körper besser zu verstehen. Außerdem ist es wichtig zu analysieren, inwieweit sich die hier dargestellten in vitro Ergebnisse direkt auf Patienten übertragen lassen, da in diesen Experimenten hohe Dosen von CBD verwendet wurden. Bisher scheinen die Daten nicht ausreichend zu sein, um CBD uneingeschränkt als Behandlungsansatz für RA-Patienten zu empfehlen. In Zukunft sind weitere Studien notwendig, um das Potenzial und die Risiken von Cannabinoiden in der RA-Therapie zu bewerten und eine Empfehlung für die RA-Therapie auszusprechen.
German
Creators:
Creators
Email
ORCID
ORCID Put Code
Kotschenreuther, Konstantin
kkotsche1@gmail.com
UNSPECIFIED
URN: urn:nbn:de:hbz:38-791104
Date: 2026
Language: English
Faculty: Faculty of Medicine
Divisions: Faculty of Medicine > Innere Medizin > Klinik I für Innere Medizin - Hämatologie und Onkologie
Subjects: Medical sciences Medicine
Uncontrolled Keywords:
Keywords
Language
Rheumatoid Arthritis
English
Cannabinoids
English
Cannabidiol
English
Date of oral exam: 5 December 2025
Referee:
Name
Academic Title
Stripecke, R.
Universitätsprofessorin Dr. rer. nat. hab.
Kofler, D. M. G.
Professor Dr. med.
Related URLs:
References: 1. Arleevskaya M, Takha E, Petrov S, et al. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int J Mol Sci 2022; 23(15). 2. Koumantaki Y, Giziaki E, Linos A, et al. Family history as a risk factor for rheumatoid arthritis: a case-control study. J Rheumatol 1997; 24(8): 1522-6. 3. Kuo CF, Grainge MJ, Valdes AM, et al. Familial aggregation of rheumatoid arthritis and co-aggregation of autoimmune diseases in affected families: a nationwide population-based study. Rheumatology (Oxford) 2017; 56(6): 928-33. 4. MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43(1): 30-7. 5. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30(11): 1205-13. 6. Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012; 44(3): 291-6. 7. Klareskog L, Gregersen PK, Huizinga TW. Prevention of autoimmune rheumatic disease: state of the art and future perspectives. Ann Rheum Dis 2010; 69(12): 2062-6. 8. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010; 34(3): J258-65. 9. Klareskog L, Stolt P, Lundberg K, et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006; 54(1): 38-46. 10. Johannsen A, Susin C, Gustafsson A. Smoking and inflammation: evidence for a synergistic role in chronic disease. Periodontol 2000 2014; 64(1): 111-26. 11. Li S, Yu Y, Yue Y, Zhang Z, Su K. Microbial Infection and Rheumatoid Arthritis. J Clin Cell Immunol 2013; 4(6). 12. Desai MK, Brinton RD. Autoimmune Disease in Women: Endocrine Transition and Risk Across the Lifespan. Front Endocrinol (Lausanne) 2019; 10: 265. 13. Zhao T, Wei Y, Zhu Y, et al. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front Immunol 2022; 13: 1007165. 14. Icen M, Nicola PJ, Maradit-Kremers H, et al. Systemic lupus erythematosus features in rheumatoid arthritis and their effect on overall mortality. J Rheumatol 2009; 36(1): 50-7. 15. Harrold LR, Shan Y, Rebello S, et al. Prevalence of Sjogren's syndrome associated with rheumatoid arthritis in the USA: an observational study from the Corrona registry. Clin Rheumatol 2020; 39(6): 1899-905. 16. Kvien TK, Uhlig T, Odegard S, Heiberg MS. Epidemiological aspects of rheumatoid arthritis: the sex ratio. Ann N Y Acad Sci 2006; 1069: 212-22. 17. Alpizar-Rodriguez D, Pluchino N, Canny G, Gabay C, Finckh A. The role of female hormonal factors in the development of rheumatoid arthritis. Rheumatology (Oxford) 2017; 56(8): 1254-63. 18. Goemaere S, Ackerman C, Goethals K, et al. Onset of symptoms of rheumatoid arthritis in relation to age, sex and menopausal transition. J Rheumatol 1990; 17(12): 1620-2. 19. Falconer J, Murphy AN, Young SP, et al. Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70(7): 984-99. 20. Sudol-Szopinska I, Kontny E, Maslinski W, et al. The pathogenesis of rheumatoid arthritis in radiological studies. Part I: Formation of inflammatory infiltrates within the synovial membrane. J Ultrason 2012; 12(49): 202-13. 21. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 2010; 233(1): 233-55. 22. Xu Y, Zhang Z, He J, Chen Z. Immune Effects of Macrophages in Rheumatoid Arthritis: A Bibliometric Analysis From 2000 to 2021. Front Immunol 2022; 13: 903771. 23. Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells 2018; 7(10). 87 24. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015; 18(4): 433-48. 25. Tseng CC, Chen YJ, Chang WA, et al. Dual Role of Chondrocytes in Rheumatoid Arthritis: The Chicken and the Egg. Int J Mol Sci 2020; 21(3). 26. Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 2012; 8(11): 656-64. 27. Jang DI, Lee AH, Shin HY, et al. The Role of Tumor Necrosis Factor Alpha (TNF-alpha) in Autoimmune Disease and Current TNF-alpha Inhibitors in Therapeutics. Int J Mol Sci 2021; 22(5). 28. Kondo N, Kuroda T, Kobayashi D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2021; 22(20). 29. Xia P, Gamble JR, Rye KA, et al. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci U S A 1998; 95(24): 14196-201. 30. Farrugia M, Baron B. The role of TNF-alpha in rheumatoid arthritis: a focus on regulatory T cells. J Clin Transl Res 2016; 2(3): 84-90. 31. Pandolfi F, Franza L, Carusi V, Altamura S, Andriollo G, Nucera E. Interleukin-6 in Rheumatoid Arthritis. Int J Mol Sci 2020; 21(15). 32. Srirangan S, Choy EH. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis 2010; 2(5): 247-56. 33. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7(6): 429-42. 34. Asif Amin M, Fox DA, Ruth JH. Synovial cellular and molecular markers in rheumatoid arthritis. Semin Immunopathol 2017; 39(4): 385-93. 35. Kato M. New insights into IFN-gamma in rheumatoid arthritis: role in the era of JAK inhibitors. Immunol Med 2020; 43(2): 72-8. 36. Cribbs AP, Kennedy A, Penn H, et al. Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol 2014; 66(9): 2344-54. 37. Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol 2022; 13: 867260. 38. Wehr P, Purvis H, Law SC, Thomas R. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin Exp Immunol 2019; 196(1): 12-27. 39. Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Front Immunol 2020; 11: 584116. 40. Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12: 649693. 41. Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8(1): 68. 42. Cosway E, Anderson G, Garside P, Prendergast C. The thymus and rheumatology: should we care? Curr Opin Rheumatol 2016; 28(2): 189-95. 43. Mannik M, Nardella FA, Sasso EH. Rheumatoid factors in immune complexes of patients with rheumatoid arthritis. Springer Semin Immunopathol 1988; 10(2-3): 215-30. 44. Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti- citrullinated protein antibodies in rheumatoid arthritis. RMD Open 2021; 7(1). 45. Santos Savio A, Machado Diaz AC, Chico Capote A, et al. Differential expression of pro- inflammatory cytokines IL-15Ralpha, IL-15, IL-6 and TNFalpha in synovial fluid from rheumatoid arthritis patients. BMC Musculoskelet Disord 2015; 16: 51. 46. Cavagna L, Boffini N, Cagnotto G, Inverardi F, Grosso V, Caporali R. Atherosclerosis and rheumatoid arthritis: more than a simple association. Mediators Inflamm 2012; 2012: 147354. 47. Mal K, Kumar R, Mansoor F, et al. Risk of Major Adverse Cardiovascular Events in Patients With Rheumatoid Arthritis. Cureus 2020; 12(12): e12246. 88 48. Qian Y, Fei Z, Nian F. The Association Between Rheumatoid Arthritis and Atrial Fibrillation: Epidemiology, Pathophysiology and Management. Int J Gen Med 2023; 16: 1899- 908. 49. Ahlers MJ, Lowery BD, Farber-Eger E, et al. Heart Failure Risk Associated With Rheumatoid Arthritis-Related Chronic Inflammation. J Am Heart Assoc 2020; 9(10): e014661. 50. Roubenoff R. Rheumatoid cachexia: a complication of rheumatoid arthritis moves into the 21st century. Arthritis Res Ther 2009; 11(2): 108. 51. Nicolau J, Lequerre T, Bacquet H, Vittecoq O. Rheumatoid arthritis, insulin resistance, and diabetes. Joint Bone Spine 2017; 84(4): 411-6. 52. Erum U, Ahsan T, Khowaja D. Lipid abnormalities in patients with Rheumatoid Arthritis. Pak J Med Sci 2017; 33(1): 227-30. 53. Olson AL, Swigris JJ, Sprunger DB, et al. Rheumatoid arthritis-interstitial lung disease- associated mortality. Am J Respir Crit Care Med 2011; 183(3): 372-8. 54. Shaw M, Collins BF, Ho LA, Raghu G. Rheumatoid arthritis-associated lung disease. Eur Respir Rev 2015; 24(135): 1-16. 55. Li YC, Chou YC, Chen HC, Lu CC, Chang DM. Interleukin-6 and interleukin-17 are related to depression in patients with rheumatoid arthritis. Int J Rheum Dis 2019; 22(6): 980- 5. 56. Kareem R, Botleroo RA, Bhandari R, et al. The Impact of Rheumatoid Arthritis on Bone Loss: Links to Osteoporosis and Osteopenia. Cureus 2021; 13(8): e17519. 57. Wahle M. [Anemia in patients with rheumatoid arthritis]. Z Rheumatol 2012; 71(10): 864- 8. 58. van Tuyl LH, Voskuyl AE, Boers M, et al. Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis 2010; 69(9): 1623-8. 59. D OG, Ireland D, Bord S, Compston JE. Joint erosion in rheumatoid arthritis: interactions between tumour necrosis factor alpha, interleukin 1, and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclasts. Ann Rheum Dis 2004; 63(4): 354-9. 60. Ruscitti P, Cipriani P, Carubbi F, et al. The role of IL-1beta in the bone loss during rheumatic diseases. Mediators Inflamm 2015; 2015: 782382. 61. Behl T, Chadha S, Sehgal A, et al. Exploring the role of cathepsin in rheumatoid arthritis. Saudi J Biol Sci 2022; 29(1): 402-10. 62. Skoumal M, Haberhauer G, Kolarz G, Hawa G, Woloszczuk W, Klingler A. Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther 2005; 7(1): R65-70. 63. Charbonneau M, Lavoie RR, Lauzier A, Harper K, McDonald PP, Dubois CM. Platelet- Derived Growth Factor Receptor Activation Promotes the Prodestructive Invadosome-Forming Phenotype of Synoviocytes from Patients with Rheumatoid Arthritis. J Immunol 2016; 196(8): 3264-75. 64. Shiomi T, Lemaitre V, D'Armiento J, Okada Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 2010; 60(7): 477-96. 65. Huang JB, Chen ZR, Yang SL, Hong FF. Nitric Oxide Synthases in Rheumatoid Arthritis. Molecules 2023; 28(11). 66. Moran EM, Mullan R, McCormick J, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res Ther 2009; 11(4): R113. 67. Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog Mol Biol Transl Sci 2017; 148: 203-303. 68. Kim KW, Kim HR, Kim BM, Cho ML, Lee SH. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am J Pathol 2015; 185(11): 3011-24. 69. Komatsu N, Takayanagi H. Immune-bone interplay in the structural damage in rheumatoid arthritis. Clin Exp Immunol 2018; 194(1): 1-8. 70. Lisowska B, Lisowski A, Siewruk K. Substance P and Chronic Pain in Patients with Chronic Inflammation of Connective Tissue. PLoS One 2015; 10(10): e0139206. 89 71. Katz PP. The impact of rheumatoid arthritis on life activities. Arthritis Care Res 1995; 8(4): 272-8. 72. Khader Y, Beran A, Ghazaleh S, Lee-Smith W, Altorok N. Predictors of remission in rheumatoid arthritis patients treated with biologics: a systematic review and meta-analysis. Clin Rheumatol 2022; 41(12): 3615-27. 73. Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med Princ Pract 2018; 27(6): 501-7. 74. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135. 75. Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol 2009; 21(2): 133-9. 76. Magee CN, Boenisch O, Najafian N. The role of costimulatory molecules in directing the functional differentiation of alloreactive T helper cells. Am J Transplant 2012; 12(10): 2588- 600. 77. Lee HG, Cho MJ, Choi JM. Bystander CD4(+) T cells: crossroads between innate and adaptive immunity. Exp Mol Med 2020; 52(8): 1255-63. 78. Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA. The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66(16): 2603-22. 79. Takatsu K. Cytokines involved in B-cell differentiation and their sites of action. Proc Soc Exp Biol Med 1997; 215(2): 121-33. 80. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15(4): 203-16. 81. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233-58. 82. Damen H, Tebid C, Viens M, Roy DC, Dave VP. Negative Regulation of Zap70 by Lck Forms the Mechanistic Basis of Differential Expression in CD4 and CD8 T Cells. Front Immunol 2022; 13: 935367. 83. Murter B, Kane LP. Control of T lymphocyte fate decisions by PI3K signaling. F1000Res 2020; 9. 84. Oh H, Ghosh S. NF-kappaB: roles and regulation in different CD4(+) T-cell subsets. Immunol Rev 2013; 252(1): 41-51. 85. Yukawa M, Jagannathan S, Vallabh S, et al. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 2020; 217(1). 86. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5(6): 472-84. 87. Kunkl M, Mastrogiovanni M, Porciello N, et al. CD28 Individual Signaling Up-regulates Human IL-17A Expression by Promoting the Recruitment of RelA/NF-kappaB and STAT3 Transcription Factors on the Proximal Promoter. Front Immunol 2019; 10: 864. 88. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24(2): 179-89. 89. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441(7090): 231-4. 90. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235-8. 91. Ivanov, II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126(6): 1121- 33. 92. Gogishvili T, Luhder F, Goebbels S, Beer-Hammer S, Pfeffer K, Hunig T. Cell-intrinsic and -extrinsic control of Treg-cell homeostasis and function revealed by induced CD28 deletion. Eur J Immunol 2013; 43(1): 188-93. 93. Gaud G, Roncagalli R, Chaoui K, et al. The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4(+) T cells. Sci Signal 2018; 11(538). 90 94. Xiao X, Shi X, Fan Y, et al. The Costimulatory Receptor OX40 Inhibits Interleukin-17 Expression through Activation of Repressive Chromatin Remodeling Pathways. Immunity 2016; 44(6): 1271-83. 95. Kuiper HM, de Jong R, Brouwer M, Lammers K, Wijdenes J, van Lier RA. Influence of CD28 co-stimulation on cytokine production is mainly regulated via interleukin-2. Immunology 1994; 83(1): 38-44. 96. Bettin L, Darbellay J, van Kessel J, Buchanan R, Popowych Y, Gerdts V. Co-stimulation by TLR7/8 ligand R848 modulates IFN-gamma production of porcine gammadelta T cells in a microenvironment-dependent manner. Dev Comp Immunol 2023; 138: 104543. 97. Hansen AS, Slater J, Biltoft M, Bundgaard BB, Moller BK, Hollsberg P. CD46 is a potent co-stimulatory receptor for expansion of human IFN-gamma-producing CD8(+) T cells. Immunol Lett 2018; 200: 26-32. 98. Shi M, Lin TH, Appell KC, Berg LJ. Cell cycle progression following naive T cell activation is independent of Jak3/common gamma-chain cytokine signals. J Immunol 2009; 183(7): 4493-501. 99. Cao Y, Rathmell JC, Macintyre AN. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One 2014; 9(8): e104104. 100. Schiff M. Co-stimulation Therapy in Rheumatoid Arthritis: Today and Tomorrow. Curr Treatm Opt Rheumatol 2015; 1(4): 334-49. 101. Mohamed Ahamada M, Wu X. Analysis of efficacy and safety of abatacept for rheumatoid arthritis: systematic review and meta-analysis. Clin Exp Rheumatol 2023; 41(9): 1882-900. 102. Yang P, Qian FY, Zhang MF, et al. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019; 106(6): 1233-40. 103. Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 2015; 74(1): 101-7. 104. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity 2008; 28(4): 445-53. 105. Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 2008; 180(7): 4785-92. 106. Wei L, Laurence A, Elias KM, O'Shea JJ. IL-21 is produced by Th17 cells and drives IL- 17 production in a STAT3-dependent manner. J Biol Chem 2007; 282(48): 34605-10. 107. Wu C, Chen Z, Xiao S, et al. SGK1 Governs the Reciprocal Development of Th17 and Regulatory T Cells. Cell Rep 2018; 22(3): 653-65. 108. Wu C, Yosef N, Thalhamer T, et al. Induction of pathogenic TH17 cells by inducible salt- sensing kinase SGK1. Nature 2013; 496(7446): 513-7. 109. Sonderegger I, Iezzi G, Maier R, Schmitz N, Kurrer M, Kopf M. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med 2008; 205(10): 2281-94. 110. Hirota K, Hashimoto M, Ito Y, et al. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis. Immunity 2018; 48(6): 1220-32 e5. 111. Quintana FJ, Jin H, Burns EJ, et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol 2012; 13(8): 770-7. 112. Keerthivasan S, Suleiman R, Lawlor R, et al. Notch signaling regulates mouse and human Th17 differentiation. J Immunol 2011; 187(2): 692-701. 113. Zhuang Y, Lu W, Chen W, Wu Y, Wang Q, Liu Y. A narrative review of the role of the Notch signaling pathway in rheumatoid arthritis. Ann Transl Med 2022; 10(6): 371. 114. Kang S, Li J, Yao Z, Liu J. Cannabidiol Induces Autophagy to Protects Neural Cells From Mitochondrial Dysfunction by Upregulating SIRT1 to Inhibits NF-kappaB and NOTCH Pathways. Front Cell Neurosci 2021; 15: 654340. 115. O'Shea JJ, Steward-Tharp SM, Laurence A, et al. Signal transduction and Th17 cell differentiation. Microbes Infect 2009; 11(5): 599-611. 91 116. Ciobanu DA, Poenariu IS, Cringus LI, et al. JAK/STAT pathway in pathology of rheumatoid arthritis (Review). Exp Ther Med 2020; 20(4): 3498-503. 117. Chiricosta L, Silvestro S, Pizzicannella J, et al. Transcriptomic Analysis of Stem Cells Treated with Moringin or Cannabidiol: Analogies and Differences in Inflammation Pathways. Int J Mol Sci 2019; 20(23). 118. Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50(4): 812-31. 119. Peyravian N, Deo S, Daunert S, Jimenez JJ. Cannabidiol as a Novel Therapeutic for Immune Modulation. Immunotargets Ther 2020; 9: 131-40. 120. Yamazaki T, Yang XO, Chung Y, et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 2008; 181(12): 8391-401. 121. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28(4): 454-67. 122. Wang Q, Wang Y, Xu D. The roles of T cells in obese adipose tissue inflammation. Adipocyte 2021; 10(1): 435-45. 123. Li J, Hsu HC, Mountz JD. The Dynamic Duo-Inflammatory M1 macrophages and Th17 cells in Rheumatic Diseases. J Orthop Rheumatol 2013; 1(1): 4. 124. Pan F, Xiang H, Yan J, et al. Dendritic Cells from Rheumatoid Arthritis Patient Peripheral Blood Induce Th17 Cell Differentiation via miR-363/Integrin alphav/TGF-beta Axis. Scand J Immunol 2017; 85(6): 441-9. 125. Zou GM, Tam YK. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur Cytokine Netw 2002; 13(2): 186-99. 126. Wang W, Shao S, Jiao Z, Guo M, Xu H, Wang S. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int 2012; 32(4): 887-93. 127. Gagliani N, Amezcua Vesely MC, Iseppon A, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015; 523(7559): 221-5. 128. Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 2013; 25(4): 305-12. 129. Mitsdoerffer M, Lee Y, Jager A, et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci U S A 2010; 107(32): 14292-7. 130. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010; 40(7): 1830-5. 131. Kim J, Kang S, Kim J, Kwon G, Koo S. Elevated levels of T helper 17 cells are associated with disease activity in patients with rheumatoid arthritis. Ann Lab Med 2013; 33(1): 52-9. 132. Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep 2009; 11(5): 365-70. 133. Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem 2004; 91(5): 1053-61. 134. Griffin GK, Newton G, Tarrio ML, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol 2012; 188(12): 6287-99. 135. Yamada R, Suzuki A, Chang X, Yamamoto K. Citrullinated proteins in rheumatoid arthritis. Front Biosci 2005; 10: 54-64. 136. Azizi G, Jadidi-Niaragh F, Mirshafiey A. Th17 Cells in Immunopathogenesis and treatment of rheumatoid arthritis. Int J Rheum Dis 2013; 16(3): 243-53. 137. Mellado M, Martinez-Munoz L, Cascio G, Lucas P, Pablos JL, Rodriguez-Frade JM. T Cell Migration in Rheumatoid Arthritis. Front Immunol 2015; 6: 384. 138. Kunwar S, Dahal K, Sharma S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol Int 2016; 36(8): 1065-75. 139. Janson PC, Linton LB, Bergman EA, et al. Profiling of CD4+ T cells with epigenetic immune lineage analysis. J Immunol 2011; 186(1): 92-102. 140. Leipe J, Pirronello F, Schulze-Koops H, Skapenko A. Altered T cell plasticity favours Th17 cells in early arthritis. Rheumatology (Oxford) 2020; 59(10): 2754-63. 92 141. Paulissen SM, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 2015; 74(1): 43-53. 142. Wang J, Zhang SX, Chang JS, et al. Low-dose IL-2 improved clinical symptoms by restoring reduced regulatory T cells in patients with refractory rheumatoid arthritis: A randomized controlled trial. Front Immunol 2022; 13: 947341. 143. Rani L, Kumar A, Karhade J, et al. IL-3 regulates the differentiation of pathogenic Th17 cells. Eur J Immunol 2022; 52(11): 1842-58. 144. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008; 118(11): 3537-45. 145. Cascao R, Moura RA, Perpetuo I, et al. Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res Ther 2010; 12(5): R196. 146. Reyes-Castillo Z, Valdes-Miramontes E, Llamas-Covarrubias M, Munoz-Valle JF. Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 2021; 21(1): 1-13. 147. Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci 2018; 19(3). 148. Miossec P. Local and systemic effects of IL-17 in joint inflammation: a historical perspective from discovery to targeting. Cell Mol Immunol 2021; 18(4): 860-5. 149. Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 2004; 200(3): 277-85. 150. Go E, Yoo SJ, Choi S, et al. Peripheral Blood from Rheumatoid Arthritis Patients Shows Decreased T(reg) CD25 Expression and Reduced Frequency of Effector T(reg) Subpopulation. Cells 2021; 10(4). 151. Jin S, Sun S, Ling H, et al. Protectin DX restores Treg/T(h)17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a. Cell Death Dis 2021; 12(3): 280. 152. Liu C, Ma H, Slitt AL, Seeram NP. Inhibitory Effect of Cannabidiol on the Activation of NLRP3 Inflammasome Is Associated with Its Modulation of the P2X7 Receptor in Human Monocytes. J Nat Prod 2020; 83(6): 2025-9. 153. Sermet S, Li J, Bach A, Crawford RB, Kaminski NE. Cannabidiol selectively modulates interleukin (IL)-1beta and IL-6 production in toll-like receptor activated human peripheral blood monocytes. Toxicology 2021; 464: 153016. 154. Dhital S, Stokes JV, Park N, Seo KS, Kaplan BL. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol 2017; 312: 25-34. 155. Carrier Y, Yuan J, Kuchroo VK, Weiner HL. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol 2007; 178(1): 179-85. 156. Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z. Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J Neuroinflammation 2015; 12: 52. 157. Hsu P, Santner-Nanan B, Hu M, et al. IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol 2015; 195(8): 3665-74. 158. Furgiuele A, Marino F, Rasini E, et al. Effect of Cannabidiol on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells. Int J Mol Sci 2023; 24(19). 159. McElvaney OJ, Curley GF, Rose-John S, McElvaney NG. Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respir Med 2021; 9(6): 643-54. 160. Pesce B, Soto L, Sabugo F, et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol 2013; 171(3): 237-42. 161. Lu HC, Mackie K. Review of the Endocannabinoid System. Biol Psychiatry Cogn Neurosci Neuroimaging 2021; 6(6): 607-15. 162. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol 1999; 58(4): 315-48. 163. Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin Pharmacol Toxicol 2022; 130(4): 439- 56. 93 164. Di Marzo V, Piscitelli F. The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics 2015; 12(4): 692-8. 165. Hillard CJ. Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43(1): 155-72. 166. Nichols JM, Kaplan BLF. Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Res 2020; 5(1): 12-31. 167. Abioye A, Ayodele O, Marinkovic A, Patidar R, Akinwekomi A, Sanyaolu A. Delta9- Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes. J Cannabis Res 2020; 2(1): 6. 168. Lu HC, Mackie K. An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry 2016; 79(7): 516-25. 169. Liu QR, Pan CH, Hishimoto A, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav 2009; 8(5): 519-30. 170. Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB(2) receptor and its role as a regulator of inflammation. Cell Mol Life Sci 2016; 73(23): 4449-70. 171. Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 2008; 20 Suppl 1: 10-4. 172. Howlett AC, Blume LC, Dalton GD. CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 2010; 17(14): 1382-93. 173. Ibsen MS, Connor M, Glass M. Cannabinoid CB(1) and CB(2) Receptor Signaling and Bias. Cannabis Cannabinoid Res 2017; 2(1): 48-60. 174. Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22(11). 175. Manzanares J, Julian M, Carrascosa A. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr Neuropharmacol 2006; 4(3): 239-57. 176. Kunos G, Osei-Hyiaman D, Liu J, Godlewski G, Batkai S. Endocannabinoids and the control of energy homeostasis. J Biol Chem 2008; 283(48): 33021-5. 177. Kesner AJ, Lovinger DM. Cannabinoids, Endocannabinoids and Sleep. Front Mol Neurosci 2020; 13: 125. 178. Vuckovic S, Srebro D, Vujovic KS, Vucetic C, Prostran M. Cannabinoids and Pain: New Insights From Old Molecules. Front Pharmacol 2018; 9: 1259. 179. de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect 2020; 8(6): e00682. 180. Nelson KM, Bisson J, Singh G, et al. The Essential Medicinal Chemistry of Cannabidiol (CBD). J Med Chem 2020; 63(21): 12137-55. 181. Wan M, Ding L, Wang D, Han J, Gao P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front Immunol 2020; 11: 186. 182. Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 2001; 134(4): 845-52. 183. Marusich JA, Wiley JL, Lefever TW, Patel PR, Thomas BF. Finding order in chemical chaos - Continuing characterization of synthetic cannabinoid receptor agonists. Neuropharmacology 2018; 134(Pt A): 73-81. 184. Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74(2): 129-80. 185. Fukuda S, Kohsaka H, Takayasu A, et al. Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis. BMC Musculoskelet Disord 2014; 15: 275. 186. Gui H, Tong Q, Qu W, Mao CM, Dai SM. The endocannabinoid system and its therapeutic implications in rheumatoid arthritis. Int Immunopharmacol 2015; 26(1): 86-91. 187. Lowin T, Schneider M, Pongratz G. Joints for joints: cannabinoids in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2019; 31(3): 271-8. 188. Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: Its relevance to rheumatic disease. Eur J Rheumatol 2017; 4(3): 210-8. 94 189. Reggio PH. Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr Med Chem 2010; 17(14): 1468-86. 190. Khajehali E, Malone DT, Glass M, Sexton PM, Christopoulos A, Leach K. Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor. Mol Pharmacol 2015; 88(2): 368-79. 191. Basavarajappa BS, Nagre NN, Xie S, Subbanna S. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice. Hippocampus 2014; 24(7): 808-18. 192. Laezza C, Pisanti S, Crescenzi E, Bifulco M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett 2006; 580(26): 6076- 82. 193. De Petrocellis L, Melck D, Palmisano A, et al. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci U S A 1998; 95(14): 8375- 80. 194. Akerman S, Kaube H, Goadsby PJ. Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 2004; 142(8): 1354-60. 195. Liu J, Cinar R, Xiong K, et al. Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase. Proc Natl Acad Sci U S A 2013; 110(47): 18832-7. 196. Pandey R, Mousawy K, Nagarkatti M, Nagarkatti P. Endocannabinoids and immune regulation. Pharmacol Res 2009; 60(2): 85-92. 197. Cencioni MT, Chiurchiu V, Catanzaro G, et al. Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS One 2010; 5(1): e8688. 198. Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10(3). 199. Wei C, Huang L, Zheng Y, Cai X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. Ann Transl Med 2021; 9(12): 1015. 200. Rahaman O, Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021; 164(2): 242-52. 201. Schlosburg JE, Kinsey SG, Lichtman AH. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS J 2009; 11(1): 39-44. 202. McDougall JJ, Muley MM, Philpott HT, Reid A, Krustev E. Early blockade of joint inflammation with a fatty acid amide hydrolase inhibitor decreases end-stage osteoarthritis pain and peripheral neuropathy in mice. Arthritis Res Ther 2017; 19(1): 106. 203. Chiurchiu V, Rapino C, Talamonti E, et al. Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes. J Immunol 2016; 197(9): 3545-53. 204. Jackson AR, Nagarkatti P, Nagarkatti M. Anandamide attenuates Th-17 cell-mediated delayed-type hypersensitivity response by triggering IL-10 production and consequent microRNA induction. PLoS One 2014; 9(4): e93954. 205. Sancho R, Calzado MA, Di Marzo V, Appendino G, Munoz E. Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway. Mol Pharmacol 2003; 63(2): 429-38. 206. Wartmann M, Campbell D, Subramanian A, Burstein SH, Davis RJ. The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett 1995; 359(2-3): 133-6. 207. Yang D, Ji HF, Zhang XM, et al. Protective effect of cytosolic phospholipase A2 inhibition against inflammation and degeneration by promoting regulatory T cells in rats with experimental autoimmune encephalomyelitis. Mediators Inflamm 2014; 2014: 890139. 208. Fordjour E, Manful CF, Sey AA, et al. Cannabis: a multifaceted plant with endless potentials. Front Pharmacol 2023; 14: 1200269. 209. Hilderbrand RL. Hemp & Cannabidiol: What is a Medicine? Mo Med 2018; 115(4): 306- 9. 95 210. Maguire RF, Wilkinson DJ, England TJ, O'Sullivan SE. The Pharmacological Effects of Plant-Derived versus Synthetic Cannabidiol in Human Cell Lines. Med Cannabis Cannabinoids 2021; 4(2): 86-96. 211. LaVigne JE, Hecksel R, Keresztes A, Streicher JM. Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Sci Rep 2021; 11(1): 8232. 212. Bosquez-Berger T, Wilson S, Iliopoulos-Tsoutsouvas C, et al. Differential Enantiomer- Specific Signaling of Cannabidiol at CB(1) Receptors. Mol Pharmacol 2022; 102(6): 259-68. 213. Rodriguez Mesa XM, Moreno Vergara AF, Contreras Bolanos LA, Guevara Moriones N, Mejia Pineros AL, Santander Gonzalez SP. Therapeutic Prospects of Cannabinoids in the Immunomodulation of Prevalent Autoimmune Diseases. Cannabis Cannabinoid Res 2021; 6(3): 196-210. 214. Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 2015; 172(20): 4790- 805. 215. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 2008; 153(2): 199-215. 216. Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE. Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 1997; 142(2): 278-87. 217. Juknat A, Pietr M, Kozela E, et al. Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Delta9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol 2012; 165(8): 2512-28. 218. Kaplan BL, Springs AE, Kaminski NE. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem Pharmacol 2008; 76(6): 726-37. 219. Muthumalage T, Rahman I. Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts. Toxicol Appl Pharmacol 2019; 382: 114713. 220. Lee CY, Wey SP, Liao MH, Hsu WL, Wu HY, Jan TR. A comparative study on cannabidiol-induced apoptosis in murine thymocytes and EL-4 thymoma cells. Int Immunopharmacol 2008; 8(5): 732-40. 221. Deng YM, Zhao C, Wu L, Qu Z, Wang XY. Cannabinoid Receptor-1 suppresses M2 macrophage polarization in colorectal cancer by downregulating EGFR. Cell Death Discov 2022; 8(1): 273. 222. Rieder SA, Chauhan A, Singh U, Nagarkatti M, Nagarkatti P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 2010; 215(8): 598-605. 223. Penzes Z, Alimohammadi S, Horvath D, et al. The dual role of cannabidiol on monocyte- derived dendritic cell differentiation and maturation. Front Immunol 2023; 14: 1240800. 224. Kozela E, Juknat A, Kaushansky N, Rimmerman N, Ben-Nun A, Vogel Z. Cannabinoids decrease the th17 inflammatory autoimmune phenotype. J Neuroimmune Pharmacol 2013; 8(5): 1265-76. 225. Nichols JM, Kummari E, Sherman J, et al. CBD Suppression of EAE Is Correlated with Early Inhibition of Splenic IFN-gamma + CD8+ T Cells and Modest Inhibition of Neuroinflammation. J Neuroimmune Pharmacol 2021; 16(2): 346-62. 226. Jan TR, Su ST, Wu HY, Liao MH. Suppressive effects of cannabidiol on antigen-specific antibody production and functional activity of splenocytes in ovalbumin-sensitized BALB/c mice. Int Immunopharmacol 2007; 7(6): 773-80. 227. Lowin T, Laaser SA, Kok C, Bruneau E, Pongratz G. Cannabidiol: Influence on B Cells, Peripheral Blood Mononuclear Cells, and Peripheral Blood Mononuclear Cell/Rheumatoid Arthritis Synovial Fibroblast Cocultures. Cannabis Cannabinoid Res 2023; 8(2): 321-34. 228. Mecha M, Feliu A, Inigo PM, Mestre L, Carrillo-Salinas FJ, Guaza C. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol Dis 2013; 59: 141-50. 96 229. Cocetta V, Governa P, Borgonetti V, et al. Cannabidiol Isolated From Cannabis sativa L. Protects Intestinal Barrier From In Vitro Inflammation and Oxidative Stress. Front Pharmacol 2021; 12: 641210. 230. Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants (Basel) 2019; 9(1). 231. Martini S, Gemma A, Ferrari M, Cosentino M, Marino F. Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24(4). 232. Pazos MR, Mohammed N, Lafuente H, et al. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 2013; 71: 282-91. 233. Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci 2018; 11: 487. 234. Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK. A CB2-Selective Cannabinoid Suppresses T-Cell Activities and Increases Tregs and IL-10. J Neuroimmune Pharmacol 2015; 10(2): 318-32. 235. Bertin S, Aoki-Nonaka Y, de Jong PR, et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat Immunol 2014; 15(11): 1055- 63. 236. Xiao T, Sun M, Kang J, Zhao C. Transient Receptor Potential Vanilloid1 (TRPV1) Channel Opens Sesame of T Cell Responses and T Cell-Mediated Inflammatory Diseases. Front Immunol 2022; 13: 870952. 237. Duo L, Wu T, Ke Z, et al. Gain of Function of Ion Channel TRPV1 Exacerbates Experimental Colitis by Promoting Dendritic Cell Activation. Mol Ther Nucleic Acids 2020; 22: 924-36. 238. McAleer JP, Fan J, Roar B, Primerano DA, Denvir J. Cytokine Regulation in Human CD4 T Cells by the Aryl Hydrocarbon Receptor and Gq-Coupled Receptors. Sci Rep 2018; 8(1): 10954. 239. Zhou J, Burkovskiy I, Yang H, Sardinha J, Lehmann C. CB2 and GPR55 Receptors as Therapeutic Targets for Systemic Immune Dysregulation. Front Pharmacol 2016; 7: 264. 240. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, et al. Cannabidiol, a non-psychotropic plant- derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor. Eur J Pharmacol 2012; 678(1-3): 78-85. 241. Zarek PE, Huang CT, Lutz ER, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 2008; 111(1): 251-9. 242. Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 2005; 174(2): 1073-80. 243. O'Sullivan SE, Sun Y, Bennett AJ, Randall MD, Kendall DA. Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol 2009; 612(1-3): 61-8. 244. Klotz L, Burgdorf S, Dani I, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 2009; 206(10): 2079-89. 245. Chung SW, Kang BY, Kim TS. Inhibition of interleukin-4 production in CD4+ T cells by peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: involvement of physical association between PPAR-gamma and the nuclear factor of activated T cells transcription factor. Mol Pharmacol 2003; 64(5): 1169-79. 246. Park HJ, Kim DH, Choi JY, et al. PPARgamma negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation. PLoS One 2014; 9(6): e99127. 247. Cosentino M, Legnaro M, Luini A, et al. Effect of Cannabidiol on Cyclooxygenase Type 1 and 2 Expression and Function in Human Neutrophils. Cannabis Cannabinoid Res 2022. 248. Takeda S, Usami N, Yamamoto I, Watanabe K. Cannabidiol-2',6'-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Drug Metab Dispos 2009; 37(8): 1733-7. 249. Stanczyk J, Kowalski ML. [The role of cyclooxygenase and prostaglandins in the pathogenesis of rheumatoid arthritis]. Pol Merkur Lekarski 2001; 11(65): 438-43. 97 250. Colli S, Caruso D, Stragliotto E, et al. Proinflammatory lipoxygenase products from peripheral mononuclear cells in patients with rheumatoid arthritis. J Lab Clin Med 1988; 112(3): 357-62. 251. Jitca G, Osz BE, Vari CE, Rusz CM, Tero-Vescan A, Puscas A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12(2). 252. Nagy G, Koncz A, Telarico T, et al. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 2010; 12(3): 210. 253. Zhao C, Gu Y, Zeng X, Wang J. NLRP3 inflammasome regulates Th17 differentiation in rheumatoid arthritis. Clin Immunol 2018; 197: 154-60. 254. Kozela E, Juknat A, Gao F, Kaushansky N, Coppola G, Vogel Z. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J Neuroinflammation 2016; 13(1): 136. 255. Anil SM, Shalev N, Vinayaka AC, et al. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci Rep 2021; 11(1): 1462. 256. Kozela E, Pietr M, Juknat A, Rimmerman N, Levy R, Vogel Z. Cannabinoids Delta(9)- tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF- kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells. J Biol Chem 2010; 285(3): 1616-26. 257. Jain N, Moorthy A. Cannabinoids in rheumatology: Friend, foe or a bystander? Musculoskeletal Care 2022; 20(2): 416-28. 258. Schulze-Schiappacasse C, Duran J, Bravo-Jeria R, Verdugo-Paiva F, Morel M, Rada G. Are Cannabis, Cannabis-Derived Products, and Synthetic Cannabinoids a Therapeutic Tool for Rheumatoid Arthritis? A Friendly Summary of the Body of Evidence. J Clin Rheumatol 2022; 28(2): e563-e7. 259. Frane N, Stapleton E, Iturriaga C, Ganz M, Rasquinha V, Duarte R. Cannabidiol as a treatment for arthritis and joint pain: an exploratory cross-sectional study. J Cannabis Res 2022; 4(1): 47. 260. Palomares B, Garrido-Rodriguez M, Gonzalo-Consuegra C, et al. Delta(9) - Tetrahydrocannabinolic acid alleviates collagen-induced arthritis: Role of PPARgamma and CB(1) receptors. Br J Pharmacol 2020; 177(17): 4034-54. 261. Malfait AM, Gallily R, Sumariwalla PF, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 2000; 97(17): 9561-6. 262. Gui H, Liu X, Liu LR, Su DF, Dai SM. Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis. Immunobiology 2015; 220(6): 817- 22. 263. Sumariwalla PF, Gallily R, Tchilibon S, Fride E, Mechoulam R, Feldmann M. A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with antiinflammatory properties in murine collagen-induced arthritis. Arthritis Rheum 2004; 50(3): 985-98. 264. Hauser W, Petzke F, Fitzcharles MA. Efficacy, tolerability and safety of cannabis-based medicines for chronic pain management - An overview of systematic reviews. Eur J Pain 2018; 22(3): 455-70. 265. Iffland K, Grotenhermen F. An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis Cannabinoid Res 2017; 2(1): 139-54. 266. Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13: 947636. 267. Koetz K, Bryl E, Spickschen K, O'Fallon WM, Goronzy JJ, Weyand CM. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci U S A 2000; 97(16): 9203- 8. 268. Ponchel F, Morgan AW, Bingham SJ, et al. Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood 2002; 100(13): 4550-6. 98 269. Paland N, Hamza H, Pechkovsky A, Aswad M, Shagidov D, Louria-Hayon I. Cannabis and Rheumatoid Arthritis: A Scoping Review Evaluating the Benefits, Risks, and Future Research Directions. Rambam Maimonides Med J 2023; 14(4). 270. Guillot A, Hamdaoui N, Bizy A, et al. Cannabinoid receptor 2 counteracts interleukin-17- induced immune and fibrogenic responses in mouse liver. Hepatology 2014; 59(1): 296-306. 271. Zhou J, Yang H, Lehmann C. Inhibition of GPR 55 improves dysregulated immune response in experimental sepsis. Clin Hemorheol Microcirc 2018; 70(4): 553-61. 272. Gajghate S, Li H, Rom S. GPR55 Inactivation Diminishes Splenic Responses and Improves Neurological Outcomes in the Mouse Ischemia/Reperfusion Stroke Model. Cells 2024; 13(3). 273. Mabou Tagne A, Marino F, Legnaro M, Luini A, Pacchetti B, Cosentino M. A Novel Standardized Cannabis sativa L. Extract and Its Constituent Cannabidiol Inhibit Human Polymorphonuclear Leukocyte Functions. Int J Mol Sci 2019; 20(8). 274. Vuolo F, Petronilho F, Sonai B, et al. Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma. Mediators Inflamm 2015; 2015: 538670. 275. Kosgodage US, Mould R, Henley AB, et al. Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Front Pharmacol 2018; 9: 889. 276. Watzl B, Scuderi P, Watson RR. Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppress interleukin-1 alpha in vitro. Int J Immunopharmacol 1991; 13(8): 1091-7. 277. Sreevalsan S, Joseph S, Jutooru I, Chadalapaka G, Safe SH. Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent. Anticancer Res 2011; 31(11): 3799-807. 278. Brighton PJ, Marczylo TH, Rana S, Konje JC, Willets JM. Characterization of the endocannabinoid system, CB(1) receptor signalling and desensitization in human myometrium. Br J Pharmacol 2011; 164(5): 1479-94. 279. Capone A, Volpe E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front Immunol 2020; 11: 348.
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/79110

Downloads

Downloads per month over past year

Export

Actions (login required)

View Item View Item