Vu, Duc-Viet (2019). Locally pluripolar sets are pluripolar. Int. J. Math., 30 (13). SINGAPORE: WORLD SCIENTIFIC PUBL CO PTE LTD. ISSN 1793-6519

Full text not available from this repository.

Abstract

We prove that every locally pluripolar set on a compact complex manifold is pluripolar. This extends similar results in the Kahler case.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Vu, Duc-VietUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-125726
DOI: 10.1142/S0129167X19500290
Journal or Publication Title: Int. J. Math.
Volume: 30
Number: 13
Date: 2019
Publisher: WORLD SCIENTIFIC PUBL CO PTE LTD
Place of Publication: SINGAPORE
ISSN: 1793-6519
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
COMPLEX MONGE-AMPERE; PLURISUBHARMONIC-FUNCTIONS; DIRICHLET PROBLEM; CAPACITIES; EQUATIONSMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/12572

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item