Vu, Duc-Viet (2019). Locally pluripolar sets are pluripolar. Int. J. Math., 30 (13). SINGAPORE: WORLD SCIENTIFIC PUBL CO PTE LTD. ISSN 1793-6519
Full text not available from this repository.Abstract
We prove that every locally pluripolar set on a compact complex manifold is pluripolar. This extends similar results in the Kahler case.
Item Type: | Journal Article | ||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-125726 | ||||||||
DOI: | 10.1142/S0129167X19500290 | ||||||||
Journal or Publication Title: | Int. J. Math. | ||||||||
Volume: | 30 | ||||||||
Number: | 13 | ||||||||
Date: | 2019 | ||||||||
Publisher: | WORLD SCIENTIFIC PUBL CO PTE LTD | ||||||||
Place of Publication: | SINGAPORE | ||||||||
ISSN: | 1793-6519 | ||||||||
Language: | English | ||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||
Subjects: | no entry | ||||||||
Uncontrolled Keywords: |
|
||||||||
Refereed: | Yes | ||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/12572 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |