Alldridge, Alexander, Max, Christopher ORCID: 0000-0001-9887-0474 and Zirnbauer, Martin R. (2020). Bulk-Boundary Correspondence for Disordered Free-Fermion Topological Phases. Commun. Math. Phys., 377 (3). S. 1761 - 1822. NEW YORK: SPRINGER. ISSN 1432-0916
Full text not available from this repository.Abstract
Guided by the many-particle quantum theory of interacting systems, we develop a uniform classification scheme for topological phases of disordered gapped free fermions, encompassing all symmetry classes of the TenfoldWay. We apply this scheme to give a mathematically rigorous proof of bulk-boundary correspondence. To that end, we construct real C*-algebras harbouring the bulk and boundary data of disordered free-fermion ground states. These we connect by a natural bulk-to-boundary short exact sequence, realising the bulk system as a quotient of the half-space theory modulo boundary contributions. To every ground state, we attach two classes in different pictures of real operator K-theory (or K R-theory): a bulk class, using Van Daele's picture, along with a boundary class, using Kasparov's Fredholm picture. We then show that the connecting map for the bulk-to-boundary sequence maps these K R-theory classes to each other. This implies bulk-boundary correspondence, in the presence of disorder, for both the strong and the weak invariants.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-130992 | ||||||||||||||||
DOI: | 10.1007/s00220-019-03581-7 | ||||||||||||||||
Journal or Publication Title: | Commun. Math. Phys. | ||||||||||||||||
Volume: | 377 | ||||||||||||||||
Number: | 3 | ||||||||||||||||
Page Range: | S. 1761 - 1822 | ||||||||||||||||
Date: | 2020 | ||||||||||||||||
Publisher: | SPRINGER | ||||||||||||||||
Place of Publication: | NEW YORK | ||||||||||||||||
ISSN: | 1432-0916 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/13099 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |