Schwagenscheidt, Markus ORCID: 0000-0002-8214-3106 and Williams, Brandon (2019). Twisted component sums of vector-valued modular forms. Abh. Math. Semin. Univ. Hamburg, 89 (2). S. 151 - 169. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 1865-8784

Full text not available from this repository.

Abstract

We construct isomorphisms between spaces of vector-valued modular forms for the dual Weil representation and certain spaces of scalar-valued modular forms in the case that the underlying finite quadratic module A has order p or 2p, where p is an odd prime. The isomorphisms are given by twisted sums of the components of vector-valued modular forms. Our results generalize work of Bruinier and Bundschuh to the case that the components F-gamma of the vector-valued modular form are antisymmetric in the sense that F-gamma = -F-gamma for all gamma is an element of A. As an application, we compute restrictions of Doi-Naganuma lifts of odd weight to components of Hirzebruch-Zagier curves.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Schwagenscheidt, MarkusUNSPECIFIEDorcid.org/0000-0002-8214-3106UNSPECIFIED
Williams, BrandonUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-131818
DOI: 10.1007/s12188-019-00209-4
Journal or Publication Title: Abh. Math. Semin. Univ. Hamburg
Volume: 89
Number: 2
Page Range: S. 151 - 169
Date: 2019
Publisher: SPRINGER HEIDELBERG
Place of Publication: HEIDELBERG
ISSN: 1865-8784
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/13181

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item