Haß, Claudia (2004). Die Funktion des Responseregulators ARR2 in der Entwicklung von Arabidopsis thaliana. PhD thesis, Universität zu Köln.
|
PDF
Hass01.pdf Download (1MB) |
|
|
PDF
Hass02.pdf Download (82kB) |
Abstract
In dieser Arbeit konnte mittels physiologischer Experimente, Expressionsanalysen, Phosphorylierungsassays und Transaktivierungsanalysen eine komplexe Funktion von ARR2 in verschiedenen Signaltransduktionswegen von Arabidopsis aufgedeckt werden. Die Analyse von Keimlingen in der arr2-Nullmutante zeigt eine hyposensitive Reaktion auf Cytokinin. Mit transienten Transaktivierungsanalysen in Protoplasten konnte die Induktion Cytokinin-responsiver Gene durch ARR2 und ARR2D80E nachgewiesen werden. Zusammenfassend führen diese Ergebnisse zur Hypothese, dass ARR2 eine regulierende Funktion in der Cytokininantwort einnimmt. Die vergleichende physiologische Analyse von Dunkelrotlicht-bestrahlten Keimlingen sowie die Expression des Chalkonsynthasegens identifizieren ARR2 als einen positiven Regulator in der phyA-vermittelten "high irradiance response". Der Nachweis, dass ARR2 in die Ethylensignaltransduktion involviert ist, wurde in verschiedenen Ansätze erbracht. Durch physiologische Analysen unter Verwendung einer arr2-Nullmutante sowie ARR2D80E-überexprimierenden Linien wurde ARR2 als regulierende Komponente der Ethylensignaltransduktion identifiziert. Dies wurde mittels transienter Transaktivierungsanalysen in Arabidopsis-Protoplasten bestätigt. Der zellfreie Phosphorelayassay identifizierte die Ethylenrezeptorhybridkinase ETR1 als putative, stromaufwärtsliegende, phosphorylierende Komponente von ARR2. Die Untersuchungen unter Einsatz der pathogenen Pilze Botrytis cinerea und Peronospora parasitica sowie Trockenstress-Exyperimente lassen eine Rolle von ARR2 in der Pathogen- und dieser abiotischen Stressantwort vermuten. Auf Mikroarrays-basierende Expressionsanalysen der arr2-Nullmutante und ARR2D80E-Pflanzen deuten darauf hin, dass das Zwei-Komponentennetzwerk direkt oder indirekt verschiedene Signaltransduktionswege beeinflussen kann. Zusammenfassend zeigen diese Daten, dass das Zwei-Komponentensystem nicht nur einen primären Signalmechanismus darstellt, sondern zusätzlich das molekulare Grundgerüst für ein komplexes Signaltransduktionsnetzwerk bildet, welches die Feinabstimmung von Signalen übernimmt und die Kommunikation von verschiedenen Signalwegen untereinander ermöglicht.
Item Type: | Thesis (PhD thesis) | ||||||||
Translated title: |
|
||||||||
Translated abstract: |
|
||||||||
Creators: |
|
||||||||
URN: | urn:nbn:de:hbz:38-13268 | ||||||||
Date: | 2004 | ||||||||
Language: | German | ||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Biology > Botanical Institute | ||||||||
Subjects: | Life sciences | ||||||||
Date of oral exam: | 2 December 2004 | ||||||||
Referee: |
|
||||||||
Refereed: | Yes | ||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/1326 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |