Pruess, Harald, Gessner, Guido, Heinemann, Stefan H. ORCID: 0000-0002-4144-0251, Rueschendorf, Franz, Ruppert, Ann-Kathrin, Schulz, Herbert, Sander, Thomas and Rimpau, Wilhelm (2019). Linkage Evidence for a Two-Locus Inheritance of LOT-Associated Seizures in a Multigenerational LQT Family With a Novel KCNQ1 Loss-of-Function Mutation. Front. Neurol., 10. LAUSANNE: FRONTIERS MEDIA SA. ISSN 1664-2295

Full text not available from this repository.

Abstract

Mutations in several genes encoding ion channels can cause the long-QT (LQT) syndrome with cardiac arrhythmias, syncope and sudden death. Recently, mutations in some of these genes were also identified to cause epileptic seizures in these patients, and the sudden unexplained death in epilepsy (SUDEP) was considered to be the pathologic overlap between the two clinical conditions. For LQT-associated KCNQ1 mutations, only few investigations reported the coincidence of cardiac dysfunction and epileptic seizures. Conical, electrophysiological and genetic characterization of a large pedigree (n = 241 family members) with LQT syndrome caused by a 12-base-pair duplication in exon 8 of the KCNQ1 gene duplicating four amino acids in the carboxyterminal KCNQ1 domain (KCNQ/dup12; p.R360_0361dupQKQR, NM_000218.2, hg19). Electrophysiological recordings revealed no substantial KCNQ1-like currents. The mutation did not exhibit a dominant negative effect on wild-type KCNQ1 channel function. Most likely, the mutant protein was not functionally expressed and thus not incorporated into a heteromeric channel tetramer. Many LQT family members suffered from syncopes or developed sudden death, often after physical activity. Of 26 family members with LOT, seizures were present in 14 (LQTplus seizure trait). Molecular genetic analyses confirmed a causative role of the novel KCNQ/dup12 mutation for the LOT trait and revealed a strong link also with the LQTplus seizure trait. Genome-wide parametric multipoint linkage analyses identified a second strong genetic modifier locus for the LOTplus seizure trait in the chromosomal region 10p14. The linkage results suggest a two-locus inheritance model for the LQTplus seizure trait in which both the KCNQ1dup12 mutation and the 10p14 risk haplotype are necessary for the occurrence of LOT-associated seizures. The data strongly support emerging concepts that KCNQ1 mutations may increase the risk of epilepsy, but additional genetic modifiers are necessary for the clinical manifestation of epileptic seizures.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Pruess, HaraldUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gessner, GuidoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Heinemann, Stefan H.UNSPECIFIEDorcid.org/0000-0002-4144-0251UNSPECIFIED
Rueschendorf, FranzUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ruppert, Ann-KathrinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schulz, HerbertUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sander, ThomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Rimpau, WilhelmUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-137463
DOI: 10.3389/fneur.2019.00648
Journal or Publication Title: Front. Neurol.
Volume: 10
Date: 2019
Publisher: FRONTIERS MEDIA SA
Place of Publication: LAUSANNE
ISSN: 1664-2295
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
LONG QT SYNDROME; EPILEPSY; CELF4; TOOLMultiple languages
Clinical Neurology; NeurosciencesMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/13746

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item